
ANL/MCS-TM-ANL-96/6 Rev B

User's Guide for mpich,

a Portable Implementation of MPI

Version 1.2.0

by

William Gropp and Ewing Lusk

A
R

G
O

N
NE

NATIONAL LABORA

TO
R

Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

MATHEMATICS AND

COMPUTER SCIENCE

DIVISION

Contents

Abstract 1

1 Introduction 2

2 Linking and running programs 2

2.1 Scripts to Compile and Link Applications 2

2.1.1 Fortran 90 and the MPI module . 3

2.2 Compiling and Linking without the Scripts 3

2.3 Running with mpirun . 4

2.3.1 SMP Clusters . 4

2.3.2 Multiple Architectures . 5

2.4 More detailed control . 5

3 Special features of di�erent systems 6

3.1 Workstation clusters . 6

3.1.1 Checking your machines list . 6

3.1.2 Using the Secure Shell . 7

3.1.3 Using the Secure Server . 7

3.1.4 Heterogeneous networks and the ch p4 device 8

3.1.5 Environment Variables used by P4 10

3.1.6 Using special interconnects . 10

3.1.7 Using Shared Libraries . 10

3.2 Fast Startup with the Multipurpose Daemon and the ch p4mpd Device . . . 12

3.2.1 Goals . 12

3.2.2 Introduction . 13

3.2.3 Examples . 15

3.2.4 How the Daemons Work . 16

3.3 Computational Grids: the globus device . 17

3.4 MPPs . 18

3.4.1 IBM SP . 18

3.4.2 Intel Paragon . 18

3.5 Symmetric Multiprocessors (SMPs) . 18

4 Sample MPI programs 19

5 The MPE library of useful extensions 19

5.1 Creating log�les . 20

5.2 Parallel X Graphics . 20

5.3 Other mpe routines . 21

5.4 Pro�ling libraries . 21

5.4.1 Accumulation of time spent in MPI routines 21

5.4.2 Log�le creation . 22

5.4.3 Customizing log�les . 22

5.4.4 Real-time animation . 23

5.5 upshot and nupshot . 23

5.6 Jumpshot . 24

5.6.1 Description of Options . 24

iii

5.6.2 Known Bugs in Jumpshot . 26

5.7 SLOG and Jumpshot-3 . 26

5.7.1 Use of SLOG . 27

5.8 Accessing the pro�ling libraries . 28

5.9 Automatic generation of pro�ling libraries 29

5.10 Tools for Pro�ling Library Management . 29

6 Debugging MPI programs with built-in tools 31

6.1 Error handlers . 31

6.2 Command-line arguments for mpirun . 31

6.3 MPI arguments for the application program 32

6.4 p4 Arguments for the ch p4 Device . 32

6.4.1 p4 Debugging . 32

6.4.2 Setting the Working Directory for the p4 Device 32

6.5 Command-line arguments for the application program 33

6.6 Starting jobs with a debugger . 33

6.7 Starting the debugger when an error occurs 33

6.8 Attaching a debugger to a running program 34

6.9 Signals . 34

6.10 Related tools . 34

6.11 Contents of the library �les . 34

7 Debugging MPI programs with TotalView 35

7.1 Preparing mpich for TotalView debugging 35

7.2 Starting an mpich program under TotalView control 35

7.3 Attaching to a running program . 35

7.4 Debugging with TotalView . 36

7.5 Summary . 36

8 Other MPI Documentation 36

9 In Case of Trouble 37

9.1 Problems compiling or linking Fortran programs 38

9.1.1 General . 38

9.2 Problems Linking C Programs . 39

9.2.1 General . 39

9.2.2 Sun Solaris . 39

9.2.3 HPUX . 40

9.2.4 LINUX . 40

9.3 Problems starting programs . 40

9.3.1 General . 40

9.3.2 Workstation Networks . 42

9.3.3 Intel Paragon . 48

9.3.4 IBM RS6000 . 48

9.3.5 IBM SP . 49

9.4 Programs fail at startup . 50

9.4.1 General . 50

9.4.2 Workstation Networks . 50

iv

9.5 Programs fail after starting . 51

9.5.1 General . 51

9.5.2 HPUX . 53

9.5.3 ch shmem device . 53

9.5.4 LINUX . 54

9.6 Trouble with Input and Output . 54

9.6.1 General . 54

9.6.2 IBM SP . 54

9.6.3 Workstation Networks . 54

9.7 Upshot and Nupshot . 55

9.7.1 General . 55

9.7.2 HP-UX . 56

A Automatic generation of pro�ling libraries 57

A.1 Writing wrapper de�nitions . 57

B Options for mpirun 61

C MPI, Globus, and GUSTO 63

C.1 Using the globus device on GUSTO . 64

C.1.1 Setting up security for GUSTO . 64

C.1.2 Authenticating yourself to GUSTO 67

C.1.3 Using mpirun on GUSTO . 67

C.1.4 Advanced features of the globus device 69

Acknowledgments 71

This User's Guide corresponds to Version 1.2.0 of mpich. It was processed by LATEX on

December 2, 1999.

v

Abstract

MPI (Message-Passing Interface) is a standard speci�cation for message-passing li-

braries. mpich is a portable implementation of the full MPI speci�cation for a wide

variety of parallel and distributed computing environments. This paper describes how

to build and run MPI programs using the mpich implementation of MPI.

Version 1.2.0 of mpich is primarily a bug �x and increased portability release, particu-

larly for LINUX-based clusters. Features that are new in 1.2.0 are:

� Full MPI 1.2 compliance, including cancel of sends

� IMPI (Interoperable MPI [2]) style ow control.

� A Windows NT version is now available as open source. The installation and use for

this version is di�erent; this manual covers only the Unix version of mpich.

� Support for SMP-clusters in mpirun.

� A Fortran 90 MPI module (actually two, see Section 2.1.1).

� Support for MPI_INIT_THREAD (but only for MPI_THREAD_SINGLE)

� Support for VPATH-style installations, along with a installation process and choice

of directory names that is closer to the GNU-recommended approach

� A new, scalable log �le format, SLOG, for use with the MPE logging tools. SLOG

�les can be read by a new version of Jumpshot which is included with this release.

� Update ROMIO

� A new device for networked clusters, similar to the p4 device but based on daemons

and thus supporting a number of new convenience features, including fast startup.

See Section 3.2 for details.

Features that were new in 1.1.1 are:

� The ROMIO subsystem implements a large part of the MPI-2 standard for parallel

I/O. For details on what types of �le systems runs on and current limitations, see the

Romio documentation in romio/doc.

� The MPI-2 standard C++ bindings are available for the MPI-1 functions.

� A new device, Globus, is available. See Section 3.3.

� A new program visualization program, called Jumpshot, is available as an alternative

to the upshot and nupshot programs.

1

1 Introduction

Mpich is a freely available implementation of the MPI standard that runs on a wide variety

of systems. The details of the mpich implementation are described in [8]; related papers

include [6] and [7]. This document assumes that mpich has already been installed; if not,

you should �rst read Installation Guide to mpich, a Portable Implementation of MPI [5].

For concreteness, this document assumes that the mpich implementation is installed into

`/usr/local/mpich' and that you have added `/usr/local/mpich/bin' to your path. If

mpich is installed somewhere else, you should make the appropriate changes. If mpich has

been built for several di�erent architectures and/or communiation mechanisms (called de-

vices in mpich), you must choose the directories appropriately; check with whoever installed

mpich at your site.

2 Linking and running programs

mpich provides tools that simplify creating MPI executables. Because mpich programs may

require special libraries and compile options, you should use the commands that mpich

provides for compiling and linking programs.

2.1 Scripts to Compile and Link Applications

The mpich implementation provides four commands for compiling and linking C (mpicc),

Fortran 77 (mpif77), C++ (mpiCC), and Fortran 90 (mpif90) programs.

You may use these commands instead of the `Makefile.in' versions, particularly for

programs contained in a small number of �les. In addition, they have a simple interface to

the pro�ling and visualization libraries described in [14]. In addition, the following special

options are supported:

-mpilog Build version that generates MPE log �les.

-mpitrace Build version that generates traces.

-mpianim Build version that generates real-time animation.

-show Show the commands that would be used without actually running them.

Use these commands just like the usual C, Fortran 77, C++, or Fortran compilers. For

example,

mpicc -c foo.c

mpif77 -c foo.f

mpiCC -c foo.C

mpif90 -c foo.f

and

2

mpicc -o foo foo.o

mpif77 -o foo foo.o

mpiCC -o foo foo.o

mpif90 -o foo foo.o

Commands for the linker may include additional libraries. For example, to use routines

from the C math library library, use

mpicc -o foo foo.o -lm

Combining compilation and linking in a single command, as shown here,

mpicc -o foo foo.c

mpif77 -o foo foo.f

mpiCC -o foo foo.C

mpif90 -o foo foo.f

may also be used.

Note that while the suÆxes .c for C programs and .f for Fortran-77 programs are

standard, there is no consensus for the suÆxes for C++ and Fortran-90 programs. The

ones shown here are accepted by many but not all systems.

2.1.1 Fortran 90 and the MPI module

When mpich was con�gured, the installation process normally looks for a Fortran 90 com-

piler, and if it �nds one, builds two di�erent versions of an MPI module. One moudle

includes only the MPI routines that do not take \choice" arguments; the other includes all

MPI routines. A choice argument is an argument that can take any datatype; typically,

these are the bu�ers in MPI communication routines such as MPI_Send and MPI_Recv.

The two di�erent modules can be accessed with the -nochoice and -choice option to

mpif90 respectively. The choice version of the module supports a limited set of datatypes

(numeric scalars and numeric one- and two-dimensional arrays). This is an experimental

feature; please send mail to mpi-bugs@mcs.anl.gov if you have any trouble. Neither of

these modules o�er full \extended Fortran support" as de�ned in the MPI-2 standard.

2.2 Compiling and Linking without the Scripts

In some cases, it is not possible to use the scripts supplied by mpich for compiling and

linking programs. For example, another tool may have its own compilation scripts. In this

case, you can use -compile info and -link info to have the mpich compilation scripts

indicate the compiler ags and linking libraries that are required for correct operation of

the mpich routines. For example, when using the ch_shmem device on Solaris systems, the

library thread (-lthread) must be linked with the application. If the thread library is not

provided, the application will still link, but essential routines will be replaced with dummy

versions contained within the Solaris C library, causing the application to fail.

3

2.3 Running with mpirun

To run an MPI program, use the mpirun command, which is located in

`/usr/local/mpich/bin' . For almost all systems, you can use the command

mpirun -np 4 a.out

to run the program `a.out' on four processors. The command mpirun -help gives you a

complete list of options, which may also be found in Appendix B.

On exit, mpirun returns a status of zero unless mpirun detected a problem, in which

case it returns a non-zero status (currently, all are one, but this may change in the future).

2.3.1 SMP Clusters

When using a cluster of symmetrix multiprocessors (SMPs) with the

ch_p4 device (con�gured with -comm=shared, you can control the number of processes

that communicate with shared memory on each SMP node. First, you need to modify the

machines �le (see Section 3.1) to indicate the number of processes that should be started on

each host. Normally this number should be no greater than the number of processors; on

SMPs with large numbers of processors, the number should be one less than the number of

processors in order to leave one processor for the operating system. The format is simple:

each line of the machines �le speci�es a hostname, optionally followed by a colon (:) and

the number of processes to allow. For example, the �le containing the lines

mercury

venus

earth

mars:2

jupiter:15

speci�es three single process machines (mercury, venus, and earth), a 2 process machine

(mars), and a 15 process machine (jupiter).

By default, mpirun will only use on process on each machine (more precisely, it will

not use shared memory to communicate between processes). By setting the environment

variable MPI_MAX_CLUSTER_SIZE to a positive integer value, mpirun will use upto that

many processes, sharing memory for communication, on a host. For example, if

MPI_MAX_CLUSTER_SIZE had the value 4, then mpirun -np 9 with the above machine �le

create one process on each of mercury, venus, and earth, 2 on mars (2 because the machines

�le speci�es that mars may have 2 processes sharing memory) and 4 on jupiter (because

jupiter may have 15 processes and only 4 more are needed). If 10 processes were needed,

mpirun would start over from the beginning of the machines �le, creating an additional

process on mercury; the value of MPI_MAX_CLUSTER_SIZE prevents mpirun from starting a

�fth process sharing memory on jupiter.

4

2.3.2 Multiple Architectures

When using the p4 device in workstation clusters, multiple architectures may be handled

by giving multiple -arch and -np arguments. For example, to run a program on 2 sun4s

and 3 rs6000s, with the local machine being a sun4, use

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program

This assumes that program will run on both architectures. If di�erent executables are

needed, the string '%a' will be replaced with the arch name. For example, if the programs

are program.sun4 and program.rs6000, then the command is

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program.%a

If instead the execuables are in di�erent directories; for example, `/tmp/me/sun4' and

`/tmp/me/rs6000', then the command is

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 /tmp/me/%a/program

It is important to specify the architecture with -arch before specifying the number of

processors. Also, the �rst arch command must refer to the processor on which the job will

be started. Speci�cally, if -nolocal is not speci�ed, then the �rst -arch must refer to the

processor from which mpirun is running.

When running on multiple machines using the globus device, mpirun is also used, but

di�erent techniques are used to control how executables are selected. See Section 3.3 for

details.

2.4 More detailed control

For more control over the process of compiling and linking programs for mpich, you should

use a `Makefile'. Rather than modify your `Makefile' for each system, you can use a

make�le template and use the command `mpireconfig' to convert the make�le template

into a valid `Makefile'. To do this, start with the �le `Makefile.in' in

`/usr/local/mpich/examples'. Modify this `Makefile.in' for your program and then

enter

mpireconfig Makefile

(not mpireconfig Makefile.in). This creates a `Makefile' from `Makefile.in'. Then

enter:

make

5

3 Special features of di�erent systems

MPI makes it relatively easy to write portable parallel programs. However, one thing that

MPI does not standardize is the environment within which the parallel program is run-

ning. There are three basic types of parallel environments: parallel computers, clusters of

workstations, and integrated distributed environments, which we will call \computational

grids", that include parallel computers and workstations, and that may span multiple sites.

Naturally, a parallel computer (usually) provides an integrated, relatively easy way of run-

ning parallel programs. Clusters of workstations and grid environments, on the other hand,

usually have no standard way of running a parallel program and will require some addi-

tional setup. The mpich implementation is designed to hide these di�erences behind the

mpirun script; however, if you need special features or options or if you are having problems

running your programs, you will need to understand the di�erences between these systems.

In the following, we describe the special features that apply for workstation clusters, grids

(as supported by the globus device), and certain parallel computers.

3.1 Workstation clusters

Most massively parallel processors (MPPs) provide a way to start a program on a requested

number of processors; mpirun makes use of the appropriate command whenever possible.

In contrast, workstation clusters require that each process in a parallel job be started

individually, though programs to help start these processes exist (see 3.1.3 below). Because

workstation clusters are not already organized as an MPP, additional information is required

to make use of them. mpich should be installed with a list of participating workstations in

the �le `machines.<arch>' in the directory `/usr/local/mpich/share'. This �le is used by

mpirun to choose processors to run on. (Using heterogeneous clusters is discussed below.)

The rest of this section discusses some of the details of this process, and how you can check

for problems. These instructions apply to only the ch_p4 device.

3.1.1 Checking your machines list

Use the script `tstmachines' in `/usr/local/mpich/sbin' to ensure that you can use all

of the machines that you have listed. This script performs an rsh and a short directory

listing; this tests that you both have access to the node and that a program in the current

directory is visible on the remote node. If there are any problems, they will be listed. These

problems must be �xed before proceeding.

The only argument to tstmachines is the name of the architecture; this is the same

name as the extension on the machines �le. For example,

/usr/local/mpich/bin/tstmachines sun4

tests that a program in the current directory can be executed by all of the machines in the

sun4 machines list. This program is silent if all is well; if you want to see what it is doing,

use the -v (for verbose) argument:

/usr/local/mpich/bin/tstmachines -v sun4

6

The output from this command might look like

Trying true on host1.uoffoo.edu ...

Trying true on host2.uoffoo.edu ...

Trying ls on host1.uoffoo.edu ...

Trying ls on host2.uoffoo.edu ...

Trying user program on host1.uoffoo.edu ...

Trying user program on host2.uoffoo.edu ...

If tstmachines �nds a problem, it will suggest possible reasons and solutions.

3.1.2 Using the Secure Shell

The Installation Guide explains how to set up your environment so that the ch p4 device

on networks will use the secure shell ssh instead of rsh. This is useful on networks where

for security reasons the use of rsh is discouraged or disallowed.

3.1.3 Using the Secure Server

Because each workstation in a cluster (usually) requires that a new user log into it, and

because this process can be very time-consuming, mpich provides a program that may be

used to speed this process. This is the secure server, and is located in `serv_p4' in the

directory `/usr/local/mpich/bin' 1. The script `chp4_servs' in the same directory may

be used to start `serv_p4' on those workstations that you can rsh programs on. You can

also start the server by hand and allow it to run in the background; this is appropriate on

machines that do not accept rsh connections but on which you have accounts.

Before you start this server, check to see if the secure server has been installed for general

use; if so, the same server can be used by everyone. In this mode, root access is required to

install the server. If the server has not been installed, then you can install it for your own

use without needing any special privileges with

chp4_servs -port=1234

This starts the secure server on all of the machines listed in the �le

`/usr/local/mpich/share/machines.<arch>'.

The port number, provided with the option -port=, must be di�erent from any other

port in use on the workstations.

To make use of the secure server for the ch_p4 device, add the following de�nitions to

your environment:

setenv MPI_USEP4SSPORT yes

setenv MPI_P4SSPORT 1234

1The globus device does not use the secure server. It uses a security model implemented using the GSS

API. See section 3.3 Security and the globus device

7

The value of MPI_P4SSPORT must be the port with which you started the secure server.

When these environment variables are set, mpirun attempts to use the secure server to

start programs that use the ch_p4 device. (The command line argument -p4ssport to

mpirun may be used instead of these environment variables; mpirun -help will give you

more information.)

3.1.4 Heterogeneous networks and the ch p4 device

A heterogeneous network of workstations is one in which the machines connected by the

network have di�erent architectures and/or operating systems. For example, a network

may contain 3 Sun SPARC (sun4) workstations and 3 SGI IRIX workstations, all of which

communicate via the TCP/IP protocol. The mpirun command may be told to use all of

these with

mpirun -arch sun4 -np 3 -arch IRIX -np 3 program.%a

While the ch_p4 device supports communication between workstations in heterogeneous

TCP/IP networks, it does not allow the coupling of multiple multicomputers. To support

such a con�guration, you should use the globus device. See the following section for details.

The special program name program.%a allows you to specify the di�erent executables

for the program, since a Sun executable won't run on an SGI workstation and vice versa.

The %a is replaced with the architecture name; in this example, program.sun4 runs on the

Suns and program.IRIX runs on the SGI IRIX workstations. You can also put the programs

into di�erent directories; for example,

mpirun -arch sun4 -np 3 -arch IRIX -np 3 /tmp/%a/program

For even more control over how jobs get started, we need to look at how mpirun starts

a parallel program on a workstation cluster. Each time mpirun runs, it constructs and uses

a new �le of machine names for just that run, using the machines �le as input. (The new

�le is called PIyyyy, where yyyy is the process identi�er.) If you specify -keep_pg on your

mpirun invocation, you can use this information to see where mpirun ran your last few jobs.

You can construct this �le yourself and specify it as an argument to mpirun. To do this for

ch_p4, use

mpirun -p4pg pgfile myprog

where pfile is the name of the �le. The �le format is de�ned below.

This is necessary when you want closer control over the hosts you run on, or when

mpirun cannot construct it automatically. Such is the case when

� You want to run on a di�erent set of machines than those listed in the machines �le.

� You want to run di�erent executables on di�erent hosts (your program is not SPMD).

� You want to run on a heterogeneous network, which requires di�erent executables.

8

� You want to run all the processes on the same workstation, simulating parallelism by

time-sharing one machine.

� You want to run on a network of shared-memory multiprocessors and need to specify

the number of processes that will share memory on each machine.

The format of a ch_p4 procgroup �le is a set of lines of the form

<hostname> <#procs> <progname> [<login>]

An example of such a �le, where the command is being issued from host sun1, might be

sun1 0 /users/jones/myprog

sun2 1 /users/jones/myprog

sun3 1 /users/jones/myprog

hp1 1 /home/mbj/myprog mbj

The above �le speci�es four processes, one on each of three suns and one on another work-

station where the user's account name is di�erent. Note the 0 in the �rst line. It is there

to indicate that no other processes are to be started on host sun1 than the one started by

the user by his command.

You might want to run all the processes on your own machine, as a test. You can do

this by repeating its name in the �le:

sun1 0 /users/jones/myprog

sun1 1 /users/jones/myprog

sun1 1 /users/jones/myprog

This will run three processes on sun1, communicating via sockets.

To run on a shared-memory multiprocessor, with 10 processes, you would use a �le like:

sgimp 9 /u/me/prog

Note that this is for 10 processes, one of them started by the user directly, and the other nine

speci�ed in this �le. This requires that mpich was con�gured with the option -comm=shared;

see the installation manual for more information.

If you are logged into host gyrfalcon and want to start a job with one process on

gyrfalcon and three processes on alaska, where the alaska processes communicate through

shared memory, you would use

local 0 /home/jbg/main

alaska 3 /afs/u/graphics

It is not possible to provide di�erent command line argument to di�erent MPI processes.

9

3.1.5 Environment Variables used by P4

There are several enviroment variables that can be used to tune the performance of the

ch_p4 device. Note that these environment variables must be de�ned for all processes that

are created, not just the process that you are launching MPI programs from (i.e., setting

these variables should be part of your `.login' or `.cshrc' startup �les).

P4 SOCKBUFSIZE. Speci�es the socket bu�er size in bytes. Increasing this value can improve

performance on some system. However, under LINUX, particularly LINUX systems

with the TCP patches, increasing this can increase the probability the mpich will

hang.

P4 WINSHIFT. This is another socket parameter that is supported on only a few platforms.

We recommend leaving it alone.

P4 GLOBMEMSIZE. This is the amount of memory in bytes reserved for communication with

shared memory (when mpich is con�gured with -comm=shared). Increase this if you

get error messages about p4_shmalloc returning NULL.

3.1.6 Using special interconnects

In some installations, certain hosts can be connected in multiple ways. For example, the

\normal" Ethernet may be supplemented by a high-speed FDDI ring. Usually, alternate

host names are used to identify the high-speed connection. All you need to do is put these

alternate names in your machines.xxxx �le. In this case, it is important not to use the form

local 0 but to use the name of the local host. For example, if hosts host1 and host2 have

ATM connected to host1-atm and host2-atm respectively, the correct ch_p4 procgroup

�le to connect them (running the program `/home/me/a.out') is

host1-atm 0 /home/me/a.out

host2-atm 1 /home/me/a.out

3.1.7 Using Shared Libraries

Shared libraries can help reduce the size of an executable. This is particularly valuable on

clusters of workstations, where the executable must normally be copied over a network to

each machine that is to execute the parallel program. However, there are some practical

problems in using shared libraries; this section discusses some of them and how to solve

most of those problems. Currently, shared libraries are not supported from C++.

In order to build shared libraries for mpich, you must have con�gured and built mpich

with the --enable-sharedlib option. Because each Unix system and in fact each com-

piler uses a di�erent and often incompatible set of options for creating shared objects and

libraries, mpich may not be able to determine the correct options. Currently, mpich un-

derstands Solaris, GNU gcc (on most platforms, including LINUX and Solaris), and IRIX.

Information on building shared libraries on other platforms should be sent to

mpi-bugs@mcs.anl.gov.

10

Once the shared libraries are built, you must tell the mpich compilation and linking

commands to use shared libraries (the reason that shared libraries are not the default will

become clear below). You can do this either with the command line option -shlib or by

setting the environment variable MPICH_USE_SHLIB to yes. For example,

mpicc -o cpi -shlib cpi.c

or

setenv MPICH_USE_SHLIB yes

mpicc -o cpi cpi.c

Using the environment variable MPICH_USE_SHLIB allows you to control whether shared

libraries are used without changing the compilation commands; this can be very useful for

projects that use make�les.

Running a program built with shared libraries can be tricky. Some (most?) systems do

not remember where the shared library was found when the executable was linked! Instead,

they depend on �nding the shared library in either a default location (such as `/lib') or in a

directory speci�ed by an environment variable such as LD_LIBRARY_PATH or by a command

line argument such as -R or -rpath (more on this below). The mpich con�gure tests for this

and will report whether an executable built with shared libraries remembers the location

of the libraries. It also attemps to use a compiler command line argument to force the

executable to remember the location of the shared library.

If you need to set an environment variable to indicate where the mpich shared libraries

are, you need to ensure that both the process that you run mpirun from and any processes

that mpirun starts gets the enviroment variable. The easiest way to do this is to set the

environment variable within your `.cshrc' (for csh or tcsh users) or `.profile' (for sh and

ksh users) �le.

However, setting the environment variable within your startup scripts can cause prob-
lems if you use several di�erent systems. For example, you may have a single `.cshrc' �le
that you use with both an SGI (IRIX) and Solaris system. You do not want to set the
LD_LIBRARY_PATH to point the SGI at the Solaris version of the mpich shared libraries2.
Instead, you would like to set the environment variable before running mpirun:

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/usr/local/mpich/lib/shared

mpirun -np 4 cpi

Unfortunately, this won't always work. Depending on the method that mpirun and mpich

use to start the processes, the environment variable may not be sent to the new process.
This will cause the program to fail with a message like

ld.so.1: /home/me/cpi: fatal: libpmpich.so.1.0: open failed: No such

file or directory

Killed

2You can make `.cshrc' check for the kind of system that you are running on and pick the paths

appropriately. This isn't as exible as the approach of setting the environment variable from the running

shell.

11

To work around this problem, you should use the (new) secure server (Section 3.1.3).

This server is built with

make serv_p4

and can be installed on all machines in the machines �le for the current architecture with

chp4_servs -port=1234

The new secure server propagates all environment variables to the remote process, and

ensures that the environment in which that process (containing your MPI program) contains

all environment variables that start with LD_ (just in case the system uses LD_SEARCH_PATH

or some other name for �nding shared libraries).

An alternative to using LD_LIBRARY_PATH and the secure server is to add an option to the

link command that provides the path to use in searching for shared libraries. Unfortunately,

the option that you would like is \append this directory to the search path" (such as you get

with -L). Instead, many compilers provide only \replace the search path with this path."3

For example, some compilers allow -Rpath:path:...:path to specify a replacement path.

Thus, if both mpich and the user provide library search paths with -R, one of the search

paths will be lost. Eventually, mpicc and friends can check for -R options and create a

uni�ed version, but they currently do not do this. You can, however, provide a complete

search path yourself if your compiler supports an option such as -R.

The preceeding may sound like a lot of e�ort to go to, and in some ways it is. For large

clusters, however, the e�ort will be worth it: programs will start faster and more reliably.

3.2 Fast Startup with the Multipurpose Daemon and the ch p4mpd Device

3.2.1 Goals

The goal of the multipurpose daemon (mpd and the associated ch p4mpd device) is to make

mpirun behave like a single program even as it starts multiple processes to execute an MPI

job. We will refer to the mpirun process and the MPI processes. Such behavior includes

� fast, scalable startup of MPI (and even non-MPI) processes. For those accustomed to

using the ch p4 device on TCP networks, this will be the most immediately noticeable

change. Job startup is now much faster.

� collection of stdout and stderr from the MPI processes to the stdout and stderr

of the mpirun process.

� delivery of mpirun's stdin to the stdin of MPI process 0.

� delivery of signals from the mpirun process to the MPI processes. This means that it

is easy to kill, suspend, and resume your parallel job just as if it were a single process,

with cntl-C, cntl-Z, and bg and fg commands

3Even though the linker may provide the \append to search path" form.

12

� delivery of command-line arguments to all MPI processes

� copying of the PATH environment from the environment in which mpirun is executed

to the environments in which the MPI processes are executed

� use of an optional argument to provide other environment variables

� use of a further optional argument to specify where the MPI processes will run (see

below).

3.2.2 Introduction

The ch p4 device relies by default on rsh for process startup on remote machines. The need

for authentication at job startup time, combined with the sequential process by which con-

tact information is collected from each remote machine and broadcast back to all machines,

makes job startup unscalably slow, especially for large numbers of processes.

With Version 1.2.0 of mpich, we introduce a new method of process startup based on

daemons. This mechanism, which requires con�guration with a new device, has not yet

been widely enough tested to become the default for clusters, but we anticipate that it

eventually will become so, and therefore release it now in order that users may experiment

with it. It has been built and tested on Solaris and Linux environments; others may require

some �ddling with the configure script in mpich/mpid/mpd, which is where the source

for the daemon code resides. It is not yet possible to install it automatically with make

install, but it can be installed by hand or used from the directory where it is built, which

is mpich/mpid/mpd.

The basic idea is to establish, ahead of job-startup time, a network of daemons on the

machines where MPI processes will run, and also on the machine on which mpirun will be

executed. Then job startup commands (and other commands) will contact the local daemon

and use the pre-existing daemons to start processes. Much of the initial synchronization

done by the ch p4 device is eliminated, since the daemons can be used at run time to aid

in establishing communication between processes.

To use the new startup mechanism, you must

� con�gure with the new device:

configure -device=ch_p4mpd

� make as usual:

make

� go to the MPICH/mpid/mpd directory, where the daemons code is located and the

daemons are built, or else put this directory in your PATH.

� start the daemons:

The daemons can be started by hand on the remote machines using the port numbers

advertised by the daemons as they come up:

13

{ On �re:

fire% mpd &

[2] 23792

[fire_55681]: MPD starting

fire%

{ On soot:

soot% mpd -h fire -p 55681 &

[1] 6629

[soot_35836]: MPD starting

soot%

The mpd's are identi�ed by a host and port number.

If the daemons do not advertize themselves, one can �nd the host and port by using

the mpdtrace command:

{ On �re:

fire% mpd &

fire% mpdtrace

mpdtrace: fire_55681: lhs=fire_55681 rhs=fire_55681 rhs2=fire_55681

fire%

{ On soot:

soot% mpd -h fire -p 55681 &

soot% mpdtrace

mpdtrace: fire_55681: lhs=soot_33239 rhs=soot_33239 rhs2=fire_55681

mpdtrace: soot_33239: lhs=fire_55681 rhs=fire_55681 rhs2=soot_33239

soot%

What mpidtrace is showing is the ring of mpd's, by hostname and port that

can be used to introduce another mpd into the ring. The left and right neighbor

of each mpd in the ring is shown as lhs and rhs respectively. rhs2 shows the

daemon two steps away to the right (which in this case is the daemon itself).

There is also a pair of scripts in the mpich/mpid/mpd directory that can help:

localmpds <number>

will start <number> mpds on the local machine. This is only really useful for testing.

Usually you would do

mpd &

to start one mpd on the local machine. Then other mpd's can be started on remote

machines via rsh, if that is available:

remotempds <hostfile>

where <hostfile> contains the names of the other machines to start the mpd's on.

It is a simple list of hostnames only, unlike the format of the MACHINES �les used by

the ch p4 device, which can contain comments and other symbols.

14

� Finally, start jobs with the mpirun command.

� If you don't start the daemons �rst, mpirun will attempt to start them for you, on

the machines listed in the mpd.hosts �le in the mpd directory. This �le is initialized

at con�gure time with �ve copies of the machine you are building on, but you can

edit it. Be sure that the mpich/bin directory is in your path if you use this method.

You can kill the daemons with the mpdallexit command.

3.2.3 Examples

Here are a few examples of usage of the mpirun that is built when the MPICH is con�gured

and built with the ch p4mpd device.

� Run the cpi example

mpirun -np 16 /home/you/mpich/examples/basic/cpi

If you put /home/you/mpich/examples/basic in your path, with

setenv PATH ${PATH}:/home/you/mpich/examples/basic

then you can just do

mpirun -np 16 cpi

� Run the fpi program, which prompts for a number of intervals to use.

mpirun -np 32 fpi

The streams stdin, stdout, and stderr will be mapped back to your mpirun process,

even if the MPI process with rank 0 is executed on a remote machine.

� Use arguments and environment variables.

mpirun -np 32 myprog arg1 arg2 -MPDENV- MPE_LOG_FORMAT=SLOG \

GLOBMEMSIZE=16000000

The argumnet -MPDENV- is a fence. All arguments after it are handled by mpirun

rather than the application program.

� Specify where the �rst process is to run. By default, MPI processes are spawned by

by consecutive mpd's in the rung, starting with the one after the local one (the one

running on the same machine as the mpirun process. Thus if you are logged into dion

and there are mpd's running dion and on belmont1, belmont2, . . . , belmont64, and

you type

mpirun -np 32 cpi

15

your processes will run on belmont1, belmont2, . . . , belmont32. ;You can force

your MPI processes to start elsewhere by giving mpirun its optional starting location

arguments. If you type

mpirun -np 32 cpi -MPDLOC- belmont33

then your job will run on belmont33, belmont34, . . . , belmont64.

This provides an extremely preliminary and crude way for mpirun to choose locations

for MPI processes. In the long run we intend to use the mpd project as an envi-

ronment for exploring the interfaces among job schedules, process managers, parallel

application programs (particularly in the dynamic environment of MPI-2), and user

commands.

� Find out what hosts your mpd's are running on:

mpirun -np 32 hostname | sort | uniq

This will run 32 instances of hostname assuming /bin is in your path, regardless of

how many mpd's there are. The other processes will be wrapped around the ring of

mpd's.

3.2.4 How the Daemons Work

Once the daemons are started they are connected in a ring: A \console" process (mpirun,

mpdtrace, mpdallexit, etc.) can connect to any mpd, which it does by using a Unix named

socket set up in /tmp by the local mpd. If it is an mpirun process, it requests that a number

of processes be started, starting at the machine given by -MPDLOC- as described above. The

location defaults to the mpd next in the ring after the one contacted by the console. Then

the following events take place.

16

� The mpd's fork that number of manager processes (the executable is called mpdman and

is located in the mpich/mpid/mpd directory). The managers are forked consecutively

by the mpd's around the ring, wrapping around if necessary.

� The managers form themselves into a ring, and fork the application processes, called

clients.

� The console disconnects from the mpd and reconnects to the �rst manager. stdin

from mpirun is delivered to the client of manager 0.

� The managers intercept standard I/O fro the clients, and deliver command-line ar-

guments and the environment variables that were speci�ed on the mpirun command.

The sockets carrying stdout and sdterr form a tree with manager 0 at the root.

At this point the situation looks something like Figure 1. When the clients need to contact

Figure 1: Mpds with console, managers, and clients

each other, they use the managers to �nd the appropriate p4 listener. The mpirun

process can be suspended, in which case it and the clients are suspended, but the mpd's

and managers remain executing, so that they can unsuspend the clients when mpirun is

unsuspended. Killing the mpirun process kills the clients and managers.

The same ring of mpd's can be used to run multiple jobs from multiple consoles at the

same time. At this time there still needs to be a separate ring of mpd's for each user.

3.3 Computational Grids: the globus device

The globus device (see http://www.globus.org/mpi) supports the execution of MPI pro-

grams on \computational grids" that may include parallel computers and workstations, and

that may span multiple sites. In such grid environments, di�erent sites may support dif-

ferent security mechanisms and di�erent process creation mechanisms. The globus device

hides these low-level details from you, allowing you to start programs with mpirun as on

MPPs and workstation clusters. The globus device also provides other convenient features,

17

such as remote access to �les and executable staging. These features are provided by using

services supplied by the Globus toolkit: see http://www.globus.org for details.

The Globus device requires that special servers be running on the computers where

processes are to be created. In our discussion of how to use the globus device, we assume

that we are using the globus device on GUSTO, an international network of resources

on which the various Globus servers are already installed and running. If possible, we

recommend that you use the globus device in this environment. If you wish to use the

globus device in other situations, please send email to developers@globus.org. Details

of how to run MPI programs using the Globus device on the GUSTO environment are in

Appendix C.

3.4 MPPs

Each MPP is slightly di�erent, and even systems from the same vendor may have di�erent

ways for running jobs at di�erent installations. The mpirun program attempts to adapt to

this, but you may �nd that it does not handle your installation. One step that you can

take is to use the -show or -t (for test) option to mpirun. This shows how mpirun would

start your MPI program without actually doing so. Often, you can use this information,

along with the instructions for starting programs at your site, to discover how to start the

program. Please let us know (mpi-bugs@mcs.anl.gov) about any special needs.

3.4.1 IBM SP

Using mpirun with the IBM SP computers can be tricky, because there are so many di�erent

(and often mutually exclusive) ways of running programs on them. The mpirun distributed

with mpich works on systems using the Argonne scheduler (sometimes called EASY) and

with systems using the default resource manager values (i.e., those not requiring the user to

choose an RMPOOL). If you have trouble running an mpich program, try following the rules

at your installation for running an MPL or POE program (if using the ch_mpl device) or

for running p4 (if using the ch_p4 device).

3.4.2 Intel Paragon

Using mpirun with an Intel Paragon can be tricky, because there are so many di�erent (and

often mutually exclusive) ways of running programs. The mpirun distributed with mpich

works with Paragons that provide a default compute partition. There are some options,

-paragon..., for selecting other forms. For example, -paragonpn compute1 speci�es the

pre-existing partition named compute1 to run on.

3.5 Symmetric Multiprocessors (SMPs)

On many of the shared-memory implementations (device ch_shmem, mpich reserves some

shared memory in which messages are transferred back and forth. By default, mpich re-

serves roughly four CHECK MBytes of shared memory. You can change this with the

18

environment variable MPI_GLOBMEMSIZE. For example, to make it 8 MB, enter

setenv MPI_GLOBMEMSIZE 8388608

Large messages are transfered in pieces, so MPI_GLOBMEMSIZE does not limit the maximum

message size but increasing it may improve performance.

By default, MPICH limits the number of processes for the ch_shmem device to 32, unless

it determines at con�gure time that the machine has more processors. You can override

this limit by setting the environment variable PROCESSOR_COUNT to the maximum number

of processes that you will want to run, and then recon�gure and remake mpich.

4 Sample MPI programs

The mpich distribution contains a variety of sample programs, which are located in the

mpich source tree.

mpich/examples/basic contains a few short programs in Fortran, C, and C++ for testing

the simplest features of MPI.

mpich/examples/test contains multiple test directories for the various parts of MPI.

Enter \make testing" in this directory to run our suite of function tests.

mpich/examples/test/lederman tests created by Steve Huss-Lederman of SRC. See the

README in that directory.

mpich/examples/perftest Performance benchmarking programs. See the script

runmpptest for information on how to run the benchmarks. These are relatively

sophisticated.

mpich/mpe/contrib/mandel A Mandelbrot program that uses the MPE graphics pack-

age that comes with mpich. It should work with any other MPI implementation as

well, but we have not tested it. This is a good demo program if you have a fast X

server and not too many processes.

mpich/mpe/contrib/mastermind A program for solving the Mastermind puzzle in par-

allel. It can use graphics (gmm) or not (mm).

Additional examples from the book Using MPI [9] are available by anonymous ftp

and through the World Wide Web at ftp://info.mcs.anl.gov/pub/mpi/using/. At the

web site ftp://info.mcs.anl.gov/pub/mpi can also be found tutorial material containing

other examples.

5 The MPE library of useful extensions

It is anticipated that mpich will continue to accumulate extension routines of various kinds.

We keep them in a library we call mpe, for MultiProcessing Environment.

19

Currently the main components of the mpe library are

� A set of routines for creating log�les for examination by upshot, nupshot or Jumpshot.

� A shared-display parallel X graphics library.

� Routines for sequentializing a section of code being executed in parallel.

� Debugger setup routines.

5.1 Creating log�les

MPE provides several ways to generate log�les that describe the progress of a computation.

These log�les can be viewed with upshot, nupshot, or Jumpshot. In addition, you can

customize these log�les to add application-speci�c information.

The easiest way to generate log�les is to link your program with a special MPE library

that uses the pro�ling feature of MPI to intercept all MPI calls in an application. To �nd

out how to link with a pro�ling library that produces log �les automatically, see Section 5.8.

You can create customized log�les for viewing with upshot or Jumpshot by calls to the

various mpe logging routines. For details, see the mpe man pages. An example is shown in

Section 5.4.3.

To be added in later editions of this User's Guide:

� All mpe logging routines

� Format of log�les

� An example log�le

5.2 Parallel X Graphics

MPE provides a set of routines that allows you to display simple graphics with the X

Window System. In addition, there are routines for input, such as getting a region de�ned

by using the mouse. A sample of the available graphics routines are shown in Table 1. For

arguments, see the man pages.

You can �nd an example of the use of the mpe graphics library in the directory

mpich/mpe/contrib/mandel. Enter

make

mpirun -np 4 pmandel

to see a parallel Mandelbrot calculation algorithm that exploits several features of the mpe

graphics library.

20

Control Routines

MPE Open graphics (collectively) opens an X display

MPE Close graphics Closes a X11 graphics device

MPE Update Updates an X11 display

Output Routines

MPE Draw point Draws a point on an X display

MPE Draw points Draws points on an X display

MPE Draw line Draws a line on an X11 display

MPE Draw circle Draws a circle

MPE Fill rectangle Draws a �lled rectangle on an X11 display

MPE Draw logic Sets logical operation for new pixels

MPE Line thickness Sets thickness of lines

MPE Make color array Makes an array of color indices

MPE Num colors Gets the number of available colors

MPE Add RGB color Add a new color

Input Routines

MPE Get mouse press Get current coordinates of the mouse

MPE Get drag region Get a rectangular region

Table 1: MPE graphics routines.

5.3 Other mpe routines

Sometimes during the execution of a parallel program, you need to ensure that only a few

(often just one) processor at a time is doing something. The routines MPE_Seq_begin and

MPE_Seq_end allow you to create a \sequential section" in a parallel program.

The MPI standard makes it easy for users to de�ne the routine to be called when an

error is detected by MPI. Often, what you'd like to happen is to have the program start

a debugger so that you can diagnose the problem immediately. In some environments, the

error handler in MPE_Errors_call_dbx_in_xterm allows you to do just that. In addition,

you can compile the mpe library with debugging code included. (See the -mpedbg con�gure

option.)

5.4 Pro�ling libraries

The MPI pro�ling interface provides a convenient way for you to add performance analysis

tools to any MPI implementation. We demonstrate this mechanism in mpich, and give you

a running start, by supplying three pro�ling libraries with the mpich distribution. MPE

users may build and use these libraries with any MPI implementation.

5.4.1 Accumulation of time spent in MPI routines

The �rst pro�ling library is simple. The pro�ling version of each MPI Xxx routine calls

PMPI Wtime (which delivers a time stamp) before and after each call to the corresponding

21

PMPI Xxx routine. Times are accumulated in each process and written out, one �le per

process, in the pro�ling version of MPI Finalize. The �les are then available for use in

either a global or process-by-process report. This version does not take into account nested

calls, which occur when MPI Bcast, for instance, is implemented in terms of MPI Send and

MPI Recv.

5.4.2 Log�le creation

The second pro�ling library generates log�les, which are �les of timestamped events. Dur-

ing execution, calls to MPE Log event are made to store events of certain types in memory,

and these memory bu�ers are collected and merged in parallel during MPI Finalize. Dur-

ing execution, MPI Pcontrol can be used to suspend and restart logging operations. (By

default, logging is on. Invoking MPI Pcontrol(0) turns it o�; MPI Pcontrol(1) turns it

back on again.) The calls to MPE Log event are made automatically for each MPI call. You

can analyze the log�le produced at the end with a variety of tools; these are described in

Sections 5.5 and 5.6.

5.4.3 Customizing log�les

In addition to using the prede�ned MPE logging libraries, you can insert your own calls

to the logging routines to de�ne and log states. States may be nested, allowing you to

de�ne a state describing a user routine that contains several MPI calls, and display both

the user de�ned state and the MPI operations contained within it. The routines

MPE_Describe_state and MPE_Log_event are used to describe user-de�ned states. The

routine MPE_Log_get_event_number may be used to get unique event numbers (this is

important if you are writing a library that uses the MPE logging routines).

MPE_Describe_state(1001, 1002, "Amult", "bluegreen");

...

MyAmult(Matrix m, Vector v)

{

/* Log the start event along with the size of the matrix */

MPE_Log_event(1001, m->n, (char *)0);

... amult code, including MPI calls ...

MPE_Log_event(1002, 0, (char *)0);

}

The log �le generated by this code will have the MPI routines within the routine MyAmult

indicated by a containing bluegreen rectangle.

If you are not using the MPE logging library, you will also need to use MPE_Init_log

and MPE_Finish_log.

22

5.4.4 Real-time animation

The third library does a simple form of real-time program animation. The MPE graphics

library contains routines that allow a set of processes to share an X display that is not

associated with any one speci�c process. Our prototype uses this capability to draw arrows

that represent message traÆc as the program runs.

5.5 upshot and nupshot

One tool that we use is called upshot, which is a derivative of Upshot [13], written in

Tcl/Tk. A screen dump of Upshot in use is shown in Figure 2. It shows parallel time lines

Figure 2: A screendump from upshot

with process states, like one of the paraGraph [12]. The view can be zoomed in or out,

horizontally or vertically, centered on any point in the display chosen with the mouse. In

Figure 2, the middle window has resulted from zooming in on the upper window at a chosen

point to show more detail. The window at the bottom of the screen show a histogram of

23

state durations, with several adjustable parameters.

Nupshot is a version of upshot that is faster but requires an older version of Tcl/tk.

5.6 Jumpshot

Another tool that is new and is now available is called Jumpshot, which has evolved from

Upshot and Nupshot. Jumpshot, which is written in Java, is a graphical visualization tool

for interpreting binary clog trace�les which displays them onto a canvas object, such as the

one depicted in Figure 3.

5.6.1 Description of Options

� Jumpshot Window

{ File

New Frame Opens a new jumpshot window

Select Log�le Opens up a window that allows you to select a log�le to view

Exit Quit jumpshot

{ Display Select the type of display jumpshot should show.

{ System Select the look and feel of choice. Certain look and feel may not be

supported. Enable or disable tool tips. Tool tips are small descriptions that

become visible when user places mouse over some region like a button, window,

etc.

{ Help

Manual Opens a window containing this section

About Gives a short description of jumpshot

{ Log�le Contains name of loaded log�le

{ Display Display loaded log�le

� Display Window

{ In, Out, Reset These buttons are used to zoom in and out horizontally.

{ Print Clicking on this button will bring up the Print Dialog window where you

will be able to choose printer-related options and print display of this window.

{ Options Clicking on this button will bring up the Options window.

{ Process #s Double clicking on process #s will bring up the Adjust Process

window

{ Scroll Bar Use to move forward or backward in time

{ Keyboard Keys

Z or z Lock Zoom at point where the mouse is positioned.

T or t Set a time marker at point where the mouse is positioned.

24

Mouse Button Clicking of any mouse button on a speci�c state instance on

the display will bring State Info window which displays information on

that state instance. Clicking on this window will dispose of it. Clicking

of any mouse button on the circle at origin of a message will open up a

window containing information on that message. Clicking on this window

will dispose of it.

� Options Window

{ Line Display Turn o�/on the zoom lock line and elapsed time line. These are

the vertical lines that you see in the Display Window.

{ Display Options Add/Cut time lines or mountain ranges to/from the display

window

{ Zoom & Time Zoom Factor: Length of display is multiplied by this value when

you zoom in. Length of display is divided by this value when you zoom out. From

and To are starting and ending times in viewport respectively. To change these

values edit and press enter.

{ Nesting Nest Factor: Measure of di�erence between heights of successive nested

levels. The larger the value, the larger the di�erence. To change the value, edit

and press enter. DO OPTIMAL NESTING: Calculates most appropriate nest

factor and implements it.

� Adjust Process Window

This window contains options used to manipulate processes.

{ Scrollbar The scrollbar is used to move the current process forward and back-

ward in time.

{ Forward/Backward This button is used to determine the direction in which

the current process is to be moved.

{ Reset This causes the process to take up its original position in time.

{ Display This checkbox controls the display status of the selected process. A

process can be selected from the AVAILABLE list.

{ Swap This causes the selected process to be swapped with the current process.

{ Delete The selected process is deleted. The deleted process is removed from the

AVAILABLE list and placed in the DELETED list.

{ Insert This causes the selected process from the DELETED list to be placed just

above the selected process from the AVAILABLE list.

� Process States

Initially below the Display Window, the process states region contains buttons for

each state and message. This region can be attached to any of the 4 sides of the

Display Window. It can also be torn away from the Display Window and made to

form its own window.

{ All States On Turn on all possible states

{ ALL States O� Turn o� all possible states

{ [State] Clicking on any state will produce a histogram window for that state.

25

{ checkbox Use this to enable/disable this state's display.

� State Histogram Window

This window contains information on an associated state. The histogram given is the

plot of the number of state instances (y-axis) versus duration in seconds (x-axis).

5.6.2 Known Bugs in Jumpshot

1. If the Process States region is torn away from the Display Window, it forms its own

window. If the Display Window is closed, the Process States window will not close.

To close it, you will have to click on the close icon present on the window (provided

by windows manager). This happens due to a bug in JToolBar, which is an object in

Java.

2. As the size of the log�le increases, jumpshot's performance decreases, and can ul-

timately result in jumpshot hanging while it is reading in the log�le. It is hard to

determine at what point jumpshot will hang, but we have seen it with �les as small

as 10MB. There is a current research e�ort that will result in the ability to make

jumpshot signi�cantly more scalable. The SLOG (scalable log �le) format supports

scalable logging of data.

Figure 3: Jumpshot Display

5.7 SLOG and Jumpshot-3

The SLOG log �le format allows one to visualize a big log�le, in the GB range, which was

not possible in previous log �le format, CLOG/ALOG. The new log�le format can be used

in the current MPICH pro�ling library system, MPE.

26

5.7.1 Use of SLOG

The MPE libraries include all the necessary SLOG de�nitions. After the program is com-

piled and linked with the MPE libraries. e.g.

mpicc -mpilog -o cpi cpi.c

The previous command allows one to pro�le all the MPI calls in MPICH.

If one wants to pro�le some user-de�ned calls using the

MPE_Log_get_event_number()/MPE_Describe_state()/MPE_Log_event()

calls. For example, mpich/mpe/contrib/test/cpilog.c and mpich/mpe/contrib/test/fpi.f

can be compiled with the following commands.

mpif77 -mpilog -o fpilog fpi.f

mpicc -mpilog -o cpilog cpilog.c -Impich/mpe

Where -Impich/mpe is for include �les, mpe.h

There are 2 ways to generate an slog �le:

1, Automatic slogfile generation : set the environmental variable,

MPE_LOG_FORMAT, to SLOG

In csh/tcsh: setenv MPE_LOG_FORMAT SLOG

For ch_p4 and ch_shmem device, run with the usual mpirun command.

mpirun -np N cpilog

But for ch_p4mpd device, run with following command

mpirun -np N cpilog -MPDENV- MPE_LOG_FORMAT=SLOG

2, CLOG to SLOG converter : cd to ~mpich/mpe, then do

"make clog2slog" which will create the converter, clog2slog.

Since the default logfile format for MPE is clog. So one can

do profiling as usual, i.e. generate a clog file. If clog file

generated is big, like above 4 MB. One would like to convert it

to a slogfile which is much more efficiently handled by jumpshot-3.

$(MPICH)/mpe/clog2slog cpilog.clog

which would generate a file called cpilog.slog. The converter also

provides some additional flexibility that is not available in automatic

slogfile generation. Namely, one can modify the frame size and other

internals used in slogfile. Do "clog2slog" at the command line for

more details.

27

5.8 Accessing the pro�ling libraries

If the MPE libraries have been built, it is very easy to access the pro�ling libraries. The

con�gure in the mpe directory determines the link path necessary for each pro�ling library

(which varies slightly for each MPI implementation). This information is placed in the

following variables:

PROF LIB The path needed to link with the mpe library only. The link path is -lmpe

-lpmpich or -lmpe -lpmpi depending on the MPI implementation.

LOG LIB The path needed to link with the logging library. The logging library will log

all MPI calls and generate a CLOG �le (which can be viewed with jumpshot) or an

ALOG �le (which can be viewed with upshot). If a CLOG �le is preferred, be sure

to set MPE LOG FORMAT to CLOG. The link path is -llmpi $PROF LIB.

TRACE LIB The path needed to link with the tracing library. The tracing library will

trace all MPI calls. Each MPI call is preceded by a line that contains the rank in

MPI_COMM_WORLD of the calling process, and followed by another line indicating that

the call has completed. Most send and receive routines also indicate the values of

count, tag, and partner (destination for sends, source for receives). Output is to

standard output. The link path is -ltmpi $PROF LIB.

ANIM LIB The path needed to link with the animation library. The animation library

produces a real-time animation of the program. This requires the MPE graphics, and

uses X11 Window System operations. You may need to provide a speci�c path for

the X11 libraries (instead of -lX11). The link path is -lampi $PROF LIB -lX11.

These variables are substituted in the Make�le in the `mpe/contrib/test' directory. As

part of the make process, a small C program `cpi' is linked with each pro�ling library.

The result of each link test will be written as part of the make output. If the link test is

successful, then these link paths should be used for your programs as well.

If the MPI implementation being used is MPICH, then adding -mpilog to your link line

will automatically link your program with the mpe and logging libraries (-llmpi -lmpe).

You will also need to add -lpmpich to your link line to link with the MPI pro�ling interface.

The con�gure in the mpe directory also determines the link path necessary to link Fortran

programs with the logging library (which varies slightly for each MPI implementation). This

path is stored in the variable FLIB PATH and substituted in the Make�le in the `mpe/test'

directory. A small Fortran program `fpi' is linked using this path during the make process

and the result is written to the make output. If successful, then this path should also be

used with your Fortran programs.

If the MPI implementation being used is MPICH, it is necessary to include the library

`-lfmpich' ahead of the pro�ling libraries. This allows C routines to be used for implement-

ing the pro�ling libraries for use by both C and Fortran programs. For example, to generate

log �les in a Fortran program, the library list is -lfmpich -llmpich -lmpe -lpmpich.

If the MPI implementation being used is not MPICH, it is necessary to include the

�le `mpe_proff.o' (sample MPI Fortran pro�ling library) ahead of the pro�ling libraries.

28

This is not necessary with MPICH since the library `-lfmpich' is included on the link line.

It should be noted here that there has not been extensive testing with pro�ling Fortran

programs using MPI implementations other than MPICH.

It is possible to combine automatic logging with manual logging. Automatic logging will

log all MPI calls and is achieved by linking with $LOG LIB. Manual logging is achieved by

the user inserting calls to the MPE routines around MPI calls. This way, only the chosen MPI

calls will be logged. However, if a combination of these two types of logging is preferred,

then the user must omit the call to MPE Finish log. Because all MPI calls will be logged,

MPI Finalize will call MPE Finish log.

5.9 Automatic generation of pro�ling libraries

For each of these libraries, the process of building the library was very similar. First,

pro�ling versions of MPI Init and MPI Finalize must be written. The pro�ling versions

of the other MPI routines are similar in style. The code in each looks like

int MPI_Xxx(. . .)

{

do something for profiling library

retcode = PMPI_Xxx(. . .);

do something else for profiling library

return retcode;

}

We generate these routines by writing the \do something" parts only once, in schematic

form, and then wrapping them around the PMPI calls automatically. It is thus easy to

generate pro�ling libraries. See the README �le in mpich/mpe/profiling/wrappergen or

Appendix A.

Examples of how to write wrapper templates are located in the mpe/profiling/lib

subdirectory. There you will �nd the source code (the .w �les) for creating the three

pro�ling libraries described above. An example Makefile for trying these out is located in

the mpe/profiling/examples directory.

5.10 Tools for Pro�ling Library Management

The sample pro�ling wrappers for mpich are distributed as wrapper de�nition code. The

wrapper de�nition code is run through the wrappergen utility to generate C code (see

Section 5.9. Any number of wrapper de�nitions can be used together, so any level of

pro�ling wrapper nesting is possible when using wrappergen.

A few sample wrapper de�nitions are provided with mpich:

timing Use MPI_Wtime() to keep track of the total number of calls to each MPI function,

and the time spent within that function. This simply checks the timer before and

after the function call. It does not subtract time spent in calls to other functions.

29

logging Create log�le of all pt2pt function calls.

vismess Pop up an X window that gives a simple visualization of all messages that are

passed.

allprof All of the above. This shows how several pro�ling libraries may be combined.

Note: These wrappers do not use any mpich-speci�c features besides the MPE graphics

and logging used by `vismess' and `logging', respectively. They should work on any MPI

implementation.

You can incorporate them manually into your application, which involves three changes

to the building of your application:

� Generate the source code for the desired wrapper(s) with wrappergen. This can be a

one-time task.

� Compile the code for the wrapper(s). Be sure to supply the needed compile-line pa-

rameters. `vismess' and `logging' require the MPE library (`-lmpe'), and the `vismess'

wrapper de�nition requires MPE GRAPHICS.

� Link the compiled wrapper code, the pro�ling version of the mpi library, and any

other necessary libraries (`vismess' requires X) into your application. The required

order is:

$(CLINKER) <application object files...> \

<wrapper object code> \

<other necessary libraries (-lmpe)> \

<profiling mpi library (-lpmpich)> \

<standard mpi library (-lmpi)>

To simplify it, some sample make�le sections have been created in

`mpich/mpe/profiling/lib':

Makefile.timing - timing wrappers

Makefile.logging - logging wrappers

Makefile.vismess - animated messages wrappers

Makefile.allprof - timing, logging, and vismess

To use these Make�le fragments:

1. (optional) Add $(PROF_OBJ) to your application's dependency list:

myapp: myapp.o $(PROF_OBJ)

2. Add $(PROF_FLG) to your compile line CFLAGS:

CFLAGS = -O $(PROF_FLG)

30

3. Add $(PROF_LIB) to your link line, after your application's object code, but before

the main MPI library:

$(CLINKER) myapp.o -L$(MPIR_HOME)/lib $(PROF_LIB) -lmpich

4. (optional) Add $(PROF_CLN) to your clean target:

rm -f *.o *~ myapp $(PROF_CLN)

5. Include the desired Make�le fragment in your make�le:

include $(MPIR_HOME)/mpe/profiling/lib/Makefile.logging

(or

#include $(MPIR_HOME)/mpe/profiling/lib/Makefile.logging

if you are using the wildly incompatible BSD 4.4-derived make)

6 Debugging MPI programs with built-in tools

Debugging of parallel programs is notoriously diÆcult, and we do not have a magical solution

to this problem. Nonetheless, we have built into mpich a few features that may be of use

in debugging MPI programs.

6.1 Error handlers

The MPI Standard speci�es a mechanism for installing one's own error handler, and speci�es

the behavior of two prede�ned ones, MPI_ERRORS_RETURN and MPI_ERRORS_ARE_FATAL. As

part of the mpe library, we include two other error handlers to facilitate the use of dbx in

debugging MPI programs.

MPE_Errors_call_dbx_in_xterm

MPE_Signals_call_debugger

These error handlers are located in the mpe directory. A con�gure option (-mpedbg) includes

these error handlers into the regular MPI libraries, and allows the command-line argument

-mpedbg to make MPE_Errors_call_dbx_in_xterm the default error handler (instead of

MPI_ERRORS_ARE_FATAL).

6.2 Command-line arguments for mpirun

mpirun provides some help in starting programs with a debugger.

mpirun -dbx -np 2 program

starts program on two machines, with the local one running under the dbx debugger. The

option -gdb selects the gdb debugger instead. The option -xxgdb allows you to use the

xxgdb (X Window GUI interface to gdb).

31

6.3 MPI arguments for the application program

These are currently undocumented, and some require con�gure options to have been spec-

i�ed (like -mpipktsize and -chmemdebug). The -mpiversion option is useful for �nding

out how your installation of mpich was con�gured and exactly what version it is.

-mpedbg If an error occurs, start xterms attached to the process that generated the error.

Requires the mpich be con�gured with -mpedbg and works on only some workstations

systems.

-mpiversion Print out the version and con�guration arguements for the mpich implemen-

tation being used.

These arguments are provided to the program, not to mpirun. That is,

mpirun -np 2 a.out -mpiversion

6.4 p4 Arguments for the ch p4 Device

When using the ch_p4 device, a number of command-line arguments may be used to control

the behavior of the program.

6.4.1 p4 Debugging

If your con�guration of mpich used -device=ch_p4, then some of the

p4 debugging capabilities are available to you. The most useful of these are the command

line arguments to the application program. Thus

mpirun -np 10 myprog -p4dbg 20 -p4rdbg 20

results in program tracing information at a level of 20 being written to stdout during

execution. For more information about what is printed at what levels, see the p4 Users'

Guide [1].

If one speci�es -p4norem on the command line, mpirun will not actually start the pro-

cesses. The master process prints a message suggesting how the user can do it. The point of

this option is to enable the user to start the remote processes under his favorite debugger,

for instance. The option only makes sense when processes are being started remotely, such

as on a workstation network. Note that this is an argument to the program, not to mpirun.

For example, to run myprog this way, use

mpirun -np 4 myprog -p4norem

6.4.2 Setting the Working Directory for the p4 Device

By default, the working directory for processes running remotely with ch_p4 device is the

same as that of the executable. To specify the working directly, use -p4wdir as follows:

32

mpirun -np 4 myprog -p4wdir myrundir

6.5 Command-line arguments for the application program

Arguments on the command line that follow the application program name and are not

directed to the mpich system (don't begin with -mpi or -p4) are passed through to all

processes of the application program. For example, if you execute

mpirun -echo -np 4 myprog -mpiversion -p4dbg 10 x y z

then -echo -np 4 is interpreted by mpirun (echo actions of mpirun and run four pro-

cesses), -mpiversion is interpreted by mpich (each process prints con�guration infor-

mation), -p4dbg 10 is interpreted by the p4 device if your version was con�gured with

-device=ch_p4 (sets p4 debugging level to 10), and x y z are passed through to the appli-

cation program. In addition, MPI Init strips out non-application arguments, so that after

the call to MPI Init in your C program, the argument vector argv contains only

myprog x y z

and your program can process its own command-line arguments in the normal way.

It is not possible to provide di�erent command-line arguments for the di�erent processes.

6.6 Starting jobs with a debugger

The -dbx option to mpirun causes processes to be run under the control of the dbx debugger.

This depends on cooperation between dbx and mpich and does not always work; if it does

not, you will know immediately. If it does work, it is often the simplest way to debug MPI

programs. Similiarly, the argument -gdb makes use of the GNU debugger.

For example, enter

mpirun -dbx or mpirun -gdb a.out

In some cases, you will have to wait until the program completes and then type run to run

the program again. Also, mpirun relies on the -sr argument to dbx (this tells dbx to read

initial commands from a �le). If your dbx does not support that feature, mpirun will fail

to start your program under the debugger.

6.7 Starting the debugger when an error occurs

Enter

mpirun ... a.out -mpedbg

(requires mpich built with -mpedbg option; do -mpiversion and look for -mpedbg option).

33

6.8 Attaching a debugger to a running program

On workstation clusters, you can often attach a debugger to a running process. For example,

the debugger dbx often accepts a process id (pid) which you can get by using the ps

command. The form is either

dbx a.out pid

or

dbx -pid pid a.out

One can also attach the TotalView debugger to a running program (See Section 7.3 below).

6.9 Signals

In general, users should avoid using signals with MPI programs. The manual page for

MPI_Init describes the signals that are used by the MPI implementation; these should not

be changed by the user.

In a few cases, you can change the signal before calling MPI_Init. In those cases,

your signal handler will be called after the MPICH implementation acts on the signal. For

example, if you want to change the behavior of SIGSEGV to print a message, you can establish

such a signal handler before calling MPI_Init. With devices such as the ch_p4 device that

handle SIGSEGV, this will cause your signal handler to be called after MPICH processes it.

6.10 Related tools

The Scalable Unix Tools (SUT) is a collection for managing workstation networks as a

MPP. These include programs for looking at all of the processes in a cluster and performing

operations on them (such as attaching the debugger to every process you own that is

running a particular program). This is not part of MPI but can be very useful in working

with workstation clusters. An MPI version of these tools is under development.

6.11 Contents of the library �les

The directory containing the MPI library �le (`libmpich.a') contains a few additional �les.

These are summarized here

libmpich.a MPI library (MPI_Xxxx)

libfmpich.a Only the Fortran interfaces to the MPI routines.

libpmpich.a Pro�ling version (PMPI_Xxxx). If weak symbols are supported by the system,

this �le may be a link to libmpich.a.

libf90mpich.a Support for MPI module for Fortran 90.

34

libf90mpichnc.a Support for the \no-choice" subset MPI module.

libmpe.a MPE graphics, logging, and other extensions (PMPE_Xxxx)

libmpe nompi.a MPE graphics without MPI

mpe prof.o Sample pro�ling library (C)

mpe pro�.o Sample pro�ling library (Fortran)

7 Debugging MPI programs with TotalView

TotalView c is a powerful, commercial-grade, portable debugger for parallel and multi-

threaded programs, available from Etnus (http://www.etnus.com/toolworksCHECK).

TotalView understands multiple MPI implementations, including mpich. By \understand"

is meant that if you have TotalView installed on your system, it is easy to start your mpich

program under the control of TotalView, even if you are running on multiple machines, man-

age your processes both collectively and individually through TotalView's convenient GUI,

and even examine internal mpich data structures to look at message queues [3]. The general

operation model of TotalView will be familiar to users of command-line-based debuggers

such as gdb or dbx.

7.1 Preparing mpich for TotalView debugging

See the Installation Guide for instructions on con�guring mpich so that TotalView can

display message queues.

7.2 Starting an mpich program under TotalView control

To start a parallel program under TotalView control, simply add `-tv' to your mpirun

arguments:

mpirun -tv -np 4 cpi

TotalView will come up and you can start the program by typing `G'. A window will come

up asking whether you want to stop processes as they execute MPI Init. You may �nd it

more convenient to say \no" and instead to set your own breakpoint after MPI Init (See

Section 7.4.) This way when the process stops it will be on a line in your program instead

of somewhere inside MPI Init.

7.3 Attaching to a running program

TotalView can attach to a running MPI program, which is particularly useful if you suspect

that your code has deadlocked. To do this start TotalView with no arguments, and then

press `N' in the root window. This will bring up a list of the processes that you can attach

35

to. When you dive through the initial mpich process in this window TotalView will also

acquire all of the other mpich processes (even if they are not local). (See the TotalView

manual for more details of this process.)

7.4 Debugging with TotalView

You can set breakpoints by clicking in the left margin on a line number. Most of the

TotalView GUI is self-explanatory. You select things with the left mouse button, bring

up an action menu with the middle button, and \dive" into functions, variables, struc-

tures, processes, etc., with the right button. Pressing cntl-? in any TotalView win-

dow brings up help relevant to that window. In the initial TotalView window it brings

up general help. The full documentation (The TotalView User's Guide) is available at

http://www.etnus.com/tw/tvdemo37.htmCHECK.

You switch from viewing one process to the next with the arrow buttons at the top-

right corner of the main window, or by explicitly selecting (left button) a process in the

root window to re-focus an existing window onto that process, or by diving (right button)

through a process in the root window to open a new window for the selected process. All

the keyboard shortcuts for commands are listed in the menu that is attached to the middle

button. The commands are mostly the familiar ones. The special one for MPI is the `m'

command, which displays message queues associated with the process.

Note also that if you use the MPI-2 function MPI Comm set name on a communicator,

TotalView will display this name whenever showing information about the communicator,

making it easier to understand which communicator is which.

7.5 Summary

TotalView is a very powerful, exible debugger for parallel and multithreaded programs.

It has many capabilities beyond those described here, which are just enough to get you

started. For more details, see the TotalView User's Guide, and particularly the section on

mpich.

8 Other MPI Documentation

Information about MPI is available from a variety of sources. Some of these, particularly

WWW pages, include pointers to other resources.

� The Standard itself:

{ As a Technical report: U. of T. report [4]

{ As postscript for ftp: at ftp.mcs.anl.gov in pub/mpi/mpi-report.ps.

{ As hypertext on the World Wide Web: http://www.mpi-forum.org

{ As a journal article: in the Fall 1994 issue of the Journal of Supercomputing

Applications [15]

36

� MPI Forum discussions

{ The MPI Forum email discussions and both current and earlier versions of the

Standard are available from netlib.

� Books:

{ Using MPI: Portable Parallel Programming with the Message-Passing Interface,

Second Edition, by Gropp, Lusk, and Skjellum [10].

{ Using MPI-2: Advanced Features of the Message-Passing Interface, by Gropp,

Lusk, and Thakur [11]

{ MPI: The Complete Reference, Second Edition, by Snir, et al. [17].

{ Parallel Programming with MPI, by Peter S. Pacheco. [16]

� Newsgroup:

{ comp.parallel.mpi

� Mailing lists:

{ mpi-comm@cs.utk.edu: The MPI Forum discussion list.

{ mpi-impl@mcs.anl.gov: The implementors' discussion list.

{ mpi-bugs@mcs.anl.gov: The address to report problems with mpich to.

� Implementations available from the web:

{ mpich is available from http://www.mcs.anl.gov/mpi/mpich or by anonymous

ftp from ftp.mcs.anl.gov in the directory pub/mpi/mpich, �le mpich.tar.gz.

{ LAM is available from http://www.mpi.nd.edu/lamCHECK or by anonymous

ftp from http://www.mpi.nd.edu/lam/.

� Test code repository (new):

{ ftp://ftp.mcs.anl.gov/pub/mpi/mpi-test

9 In Case of Trouble

This section describes some commonly encountered problems and their solutions. It also

describes machine-dependent considerations. Send any problem that you can not solve by

checking this section to mpi-bugs@mcs.anl.gov.

Please include:

� The version of mpich (e.g., 1.2.0)

� The output of running your program with the -mpiversion argument (e.g., mpirun

-np 1 a.out -mpiversion)

� The output of

37

uname -a

for your system. If you are on an SGI system, also

hinv

� If the problem is with a script like con�gure or mpirun, run the script with the -echo

argument (e.g., mpirun -echo -np 4 a.out).

� If you are using a network of workstations, also send the output of bin/tstmachines

CHECK not sbin4.

Each section is organized in question and answer format, with questions that relate

to more than one environment (workstation, operating system, etc.) �rst, followed by

questions that are speci�c to a particular environment. Problems with workstation clusters

are collected together as well.

9.1 Problems compiling or linking Fortran programs

9.1.1 General

1. Q: When linking the test program, the following message is generated:

f77 -g -o secondf secondf.o -L/usr/local/mpich/lib/sun4/ch_p4 -lmpich

invalid option -L/usr/local/mpich/lib/sun4/ch_p4

ld: -lmpich: No such file or directory

A: This f77 program does not accept the -L command to set the library search path.

Some systems provide a shell script for f77 that is very limited in its abilities. To

work around this, use the full library path instead of the -L option:

f77 -g -o secondf secondf.o /usr/local/mpich/lib/sun4/ch_p4/libmpich.a

As of the mpich 1.2.0 release, the mpich con�gure attempts to �nd the correct option

for indicating library paths to the Fortran compiler. If you �nd that the mpich

con�gure has made an error, please submit a bug report to mpi-bugs@mcs.anl.gov.

2. Q: When linking Fortran programs, I get unde�ned symbols such as

f77 -c secondf.f

secondf.f:

MAIN main:

f77 -o secondf secondf.o -L/home/mpich/lib/solaris/ch_shmem -lmpich

Undefined first referenced

symbol in file

getdomainname

/home/mpich/lib/solaris/ch_shmem/libmpi .a(shmempriv.o)

ld: fatal: Symbol referencing errors. No output written to secondf

4
tstmachines is not supported in the globus device

38

There is no problem with C programs.

A: This means that your C compiler is providing libraries for you that your Fortran

compiler is not providing. Find the option for the C compiler and for the Fortran

compilers that indicate which library �les are being used (alternately, you may �nd an

option such as -dryrun that shows what commands are being used by the compiler).

Build a simple C and Fortran program and compare the libraries used (usually on the

ld command line). Try the ones that are present for the C compiler and missing for

the Fortran compiler.

3. Q: When trying to run configure, I get error messages like

./configure: syntax error at line 20: `(' unexpected

A: You have an obsolete version of the Bourne shell (sh). MPICH requires that the

sh shell support shell procedures; this has been standard in most Bourne shells for

years. To �x this, you might consider (a) getting an update from your vendor or (b)

installing one of the many publically available sh-shell replacements.

9.2 Problems Linking C Programs

9.2.1 General

1. Q: When linking programs, I get messages about __builtin_saveregs being unde-

�ned.

A: You may have a system on which C and Fortran routines are incompatible (for

example, using gcc and the vendor's Fortran compiler). If you do not plan to use

Fortran, the easiest �x is to rebuild with the -nof77 option to con�gure.

You should also look into making your C compiler compatible with your Fortran

compiler. One possibility is use f2c to convert Fortran to C, then use the C compiler

to compile everything. If you take this route, remember that every Fortran routine

has to be compiled using f2c and the C compiler.

9.2.2 Sun Solaris

1. Q: When linking on Solaris, I get an error like this:

cc -g -o testtypes testtypes.o -L/usr/local/mpich/lib/solaris/ch_p4 -lmpich

-lsocket -lnsl -lthread

ld: warning: symbol `_defaultstkcache' has differing sizes:

(file /usr/lib/libthread.so value=0x20; file /usr/lib/libaio.so

value=0x8);

/usr/lib/libthread.so definition taken

A: This is a bug in Solaris 2.3 that is �xed in Solaris 2.4. There may be a patch for

Solaris 2.3; contact Sun for more information.

39

9.2.3 HPUX

1. Q: When linking on HPUX, I get an error like this:

cc -o pgm pgm.o -L/usr/local/mpich/lib/hpux/ch_p4 -lmpich -lm

/bin/ld: Unsatisfied symbols:

sigrelse (code)

sigset (code)

sighold (code)

*** Error code 1

A: You need to add the link option -lV3. The p4 device uses the System V signals

on the HP; these are provided in the `V3' library.

9.2.4 LINUX

1. Q: When linking a Fortran program, I get

Linking:

foo.o(.data+0x0): undefined reference to `pmpi_wtime_'

A: This is a bug in the pgf77 compiler (which is itself a workaround for a bug in

the LINUX ld command). You can �x it by either adding -lpmpich to the link

line or modifying the `mpif.h' to remove the external pmpi_wtime, pmpi_wtick

statement.

The mpich con�gure attempts to determine if pmpi_wtime and pmpi_wtick can be

declared in `mpif.h' and removes them if there is a problem. If this happens and you use

pmpi_wtime or pmpi_wtick in your program, you will need to declare them as functions

returning double precision values.

9.3 Problems starting programs

9.3.1 General

1. Q: When trying to start a program with

mpirun -np 2 cpi

either I get an error message or the program hangs.

A: On Intel Paragons and IBM SP1 and SP2, there are many mutually exclusive ways

to run parallel programs; each site can pick the approach(es) that it allows. The script

mpirun tries one of the more common methods, but may make the wrong choice. Use

the -v or -t option to mpirun to see how it is trying to run the program, and then

compare this with the site-speci�c instructions for using your system. You may need

to adapt the code in mpirun to meet your needs.

40

2. Q: When trying to run a program with, e.g., mpirun -np 4 cpi, I get

usage : mpirun [options] <executable> [<dstnodes>] [-- <args>]

or

mpirun [options] <schema>

A: You have a command named mpirun in your path ahead of the mpich version.

Execute the command

which mpirun

to see which command named mpirun was actually found. The �x is to either change

the order of directories in your path to put the mpich version of mpirun �rst, or to

de�ne an alias for mpirun that uses an absolute path. For example, in the csh shell,

you might do

alias mpirun /usr/local/mpich/bin/mpirun

3. Q: When trying to start a large number of processes on a workstation network, I get

the message

p4_error: latest msg from perror: Too many open files

A: There is a limitation on the number of open �le descriptors. On some systems

you can increase this limit yourself; on others you must have help from your system

administrator. You could experiment with the secure server, but it is not a complete

solution. We are working now on a more scalable startup mechanism for the next

release.

4. Q: When I issue the command:

mpirun -dbx -np 1 foo

dbx does start up but this message appears:

dbx version 3.19 Nov 3 1994 19:59:46

Unexpected argument ignored: -sr

/scr/MPI/me/PId8704 is not an executable

A: Your version of dbx does not support the -sr argument; this is needed to give dbx

the initial commands to execute. You will not be able to use mpirun with the -dbx

argument. Try using -gdb or -xxgdb instead of -dbx if you have the GNU debugger.

Another excellent debugging option is to use TotalView.

5. Q: When attempting to run cpilog I get the following message:

ld.so.1: cpilog: fatal: libX11.so.4: can't open file: errno 2

41

A: The X11 version that con�gure found isn't properly installed. This is a common

problem with Sun/Solaris systems. One possibility is that your Solaris machines are

running slightly di�erent versions. You can try forcing static linking (-Bstatic on

SunOS).

Alternately, consider adding these lines to your `.login' (assuming C shell):

setenv OPENWINHOME /usr/openwin

setenv LD_LIBRARY_PATH /opt/SUNWspro/lib:/usr/openwin/lib

(you may want to check with your system administrator �rst to make sure that the

paths are correct for your system). Make sure that you add them before any line like

if ($?USER == 0 || $?prompt == 0) exit

6. Q: My program fails when it tries to write to a �le.

A: If you opened the �le before calling MPI_INIT, the behavior of MPI (not just

mpich) is unde�ned. On the ch_p4 version, only process zero (in MPI_COMM_WORLD)

will have the �le open; the other processes will not have opened the �le. Move the

operations that open �les and interact with the outside world to after MPI_INIT (and

before MPI_FINALIZE).

7. Q: Programs seem to take forever to start.

A: This can be caused by any of several problems. On systems with dynamically-

linked executables, this can be caused by problems with the �le system suddenly

getting requests from many processors for the dynamically-linked parts of the exe-

cutable (this has been measured as a problem with some DFS implementations). You

can try statically linking your application.

On workstation networks, long startup times can be due to the time used to start

remote processes; see the discussion on the secure server in Section 3.1.3.

9.3.2 Workstation Networks

1. Q: When I use mpirun, I get the message Permission denied.

A: If you see something like this

% mpirun -np 2 cpi

Permission denied.

or

% mpirun -np 2 cpi

socket: protocol failure in circuit setup

when using the ch_p4 device, it probably means that you do not have permission to

use rsh to start processes. The script tstmachines can be used to test this. For

example, if the architecture type (the -arch argument to con�gure) is sun4, then try

42

tstmachines sun4

If this fails, then you may need a `.rhosts' or `/etc/hosts.equiv' �le (you may need

to see your system administrator) or you may need to use the p4 server (see Section

3.1.3). Another possible problem is the choice of the remote shell program; some

systems have several. Check with your systems administrator about which version of

rsh or remsh you should be using. If you must use ssh, see the section on using ssh

in the Installation Manual.

If your system allows a `.rhosts' �le, do the following:

(a) Create a �le `.rhosts' in your home directory

(b) Change the protection on it to user read/write only: chmod og-rwx .rhosts.

(c) Add one line to the `.rhosts' �le for each processor that you want to use. The

format is

host username

For example, if your username is doe and you want to user machines a.our.org

and b.our.org, your `.rhosts' �le should contain

a.our.org doe

b.our.org doe

Note the use of fully quali�ed host names (some systems require this).

On networks where the use of .rhosts �les is not allowed, (such as the one in

MCS at Argonne), you should use the p4 server to run on machines that are not

trusted by the machine that you are initiating the job from.

Finally, you may need to use a non-standard rsh command within MPICH.

MPICH must be recon�gured with -rsh=command_name, and perhaps also with

-rshnol if the remote shell command does not support the -l argument. Systems

using Kerberos and/or AFS may need this. See the section in the Installation

Guide on using the secure shell ssh, for example.

An alternate source of the \Permission denied." message is that you have used

the su command to change your e�ective user id. On some systems the ch_p4

device will not work in this situation. Log in normally and try again.

2. Q: When I use mpirun, I get the message Try again.

A: If you see something like this

% mpirun -np 2 cpi

Try again.

it means that you were unable to start a remote job with the remote shell command

on some machine, even though you would normally be able to. This may mean that

the destination machine is very busy, out of memory, or out of processes. The man

page for rshd may give you more information.

The only �x for this is to have your system administrator look into the machine that

is generating this message.

43

3. Q: When running the workstation version (-device=ch_p4), I get error messages of

the form

stty: TCGETS: Operation not supported on socket

or

stty: tcgetattr: Permission denied

or

stty: Can't assign requested address

A: This means that one your login startup scripts (i.e., `.login' and `.cshrc' or

`.profile') contains an unguarded use of the stty or tset program. For C shell

users, one typical �x is to check for the variables TERM or PROMPT to be initialized. For

example,

if ($?TERM) then

eval `tset -s -e^\? -k^U -Q -I $TERM`

endif

Another solution is to see if it is appropriate to add

if ($?USER == 0 || $?prompt == 0) exit

near the top of your `.cshrc' �le (but after any code that sets up the runtime envi-

ronment, such as library paths (e.g., LD_LIBRARY_PATH)).

4. Q: When running the workstation version (-device=ch_p4) and running either the

tstmachines script to check the machines �le or the MPICH tests, I get messages

about unexpected output or di�erences from the expected output. I also get extra

output when I run programs. MPI programs do seem to work, however.

A: This means that one your login startup scripts (i.e., `.login' and `.cshrc' or

`.profile' or `.bashrc') contains an unguarded use of some program that generates

output, such as fortune or even echo. For C shell users, one typical �x is to check

for the variables TERM or PROMPT to be initialized. For example,

if ($?TERM) then

fortune

endif

Another solution is to see if it is appropriate to add

if ($?USER == 0 || $?prompt == 0) exit

near the top of your `.cshrc' �le (but after any code that sets up the runtime envi-

ronment, such as library paths (e.g., LD_LIBRARY_PATH)).

44

5. Q: When using mpirun I get strange output like

arch: No such file or directory

A: This is usually a problem in your `.cshrc' �le. Try the shell command

which hostname

If you see the same strange output, then your problem is in your `.cshrc' �le.

6. Q: When I try to run my program, I get

p0_4652: p4_error: open error on procgroup file (procgroup): 0

A: This indicates that the mpirun program did not create the expected input to run

the program. The most likely reason is that the mpirun command is trying to run a

program built with device ch_p4 (workstation networks) as shared memory or some

special system.

Try the following:

Run the program using mpirun and the -t argument:

mpirun -t -np 1 foo

This should show what mpirun would do (-t is for testing). Or you can use the -echo

argument to see exactly what mpirun is doing:

mpirun -echo -np 1 foo

Depending on the choice made by the installer of mpich, you should select the device-

speci�c version of mpirun over a \generic" version. For mpich installations that have

been built in-place with the regular defaults, the mpirun to use can be found in

`build/<architecture>/<device>/bin'.

7. Q: When trying to run a program I get this message:

icy% mpirun -np 2 cpi -mpiversion

icy: icy: No such file or directory

A: Your problem is that `/usr/lib/rsh' is not the remote shell program. Try the

following:

which rsh

ls /usr/*/rsh

You probably have `/usr/lib' in your path ahead of `/usr/ucb' or `/usr/bin'. This

picks the `restricted' shell instead of the `remote' shell. The easiest �x is to just remove

`/usr/lib' from your path (few people need it); alternately, you can move it to after

the directory that contains the `remote' shell rsh.

Another choice would be to add a link in a directory earlier in the search path to the

remote shell. For example, I have `/home/gropp/bin/solaris' early in my search

path; I could use

45

cd /home/gropp/bin/solaris

ln -s /usr/bin/rsh rsh

there (assuming `/usr/bin/rsh' is the remote shell).

8. Q: When trying to run a program I get this message:

trying normal rsh

A: You are using a version of the remote shell program that does not support the

-l argument. Recon�gure with -rshnol and rebuild MPICH. You may su�er some

loss of functionality if you try to run on systems where you have di�erent user names.

You might also try using ssh.

9. Q: When I run my program, I get messages like

| ld.so: warning: /usr/lib/libc.so.1.8 has older revision than expected 9

A: You are trying to run on another machine with an out-dated version of the basic

C library. For some reason, some manufacturers do not make the shared libraries

compatible between minor (or even maintenance) releases of their software. You need

to have you system administrator bring the machines to the same software level.

One temporary �x that you can use is to add the link-time option to force static linking

instead of dynamic linking. For some Sun workstations, the option is -Bstatic.

10. Q: Programs never get started. Even tstmachines hangs.

A: Check �rst that rsh works at all. For example, if you have workstations w1 and

w2, and you are running on w1, try

rsh w2 true

This should complete quickly. If it does not, try

rsh w1 true

(that is, use rsh to run true on the system that you are running on). If you get

permission denied, see the help on that. If you get

krcmd: No ticket file (tf_util)

rsh: warning, using standard rsh: can't provide Kerberos auth data.

then your system has a faulty installation of rsh. Some FreeBSD systems have been

observed with this problem. Have your system administrator correct the problem

(often one of an inconsistent set of rsh/rshd programs).

11. Q: When running the workstation version (-device=ch_p4), I get error messages of

the form

more slaves than message queues

46

A: This means that you are trying to run mpich in one mode when it was con�gured

for another. In particular, you are specifying in your p4 procgroup �le that several

processes are to shared memory on a particular machine by either putting a number

greater than 0 on the �rst line (where it signi�es number of local processes besides

the original one), or a number greater than 1 on any of the succeeding lines (where it

indicates the total number of processes sharing memory on that machine). You should

either change your procgroup �le to specify only one process on line, or recon�gure

mpich with

configure -device=ch_p4 -comm=shared

which will recon�gure the p4 device so that multiple processes can share memory on

each host. The reason this is not the default is that with this con�guration you will see

busy waiting on each workstation, as the device goes back and forth between selecting

on a socket and checking the internal shared-memory queue.

12. Q: My programs seem to hang in MPI_Init.

A: There are a number of ways that this can happen:

(a) One of the workstations you selected to run on is dead (try `tstmachines' 5).

(b) You linked with the FSU pthreads package; this has been reported to cause

problems, particularly with the system select call that is part of Unix and is

used by mpich.

Another is if you use the library `-ldxml' (extended math library) on Digital Al-

pha systems. This has been observed to cause MPI_Init to hang. No workaround

is known at this time; contact Digital for a �x if you need to use MPI and `-ldxml'

together.

The root of this problem is that the ch p4 device uses SIG USR1, and so any

library that also uses this signal can interfere with the operation of mpich if it

is using ch p4. You can rebuild mpich to use a di�erent signal by using the

con�gure argument -listener_sig=SIGNAL_NAME and remaking mpich.

13. Q: My program (using device ch_p4) fails with

p0_2005: p4_error: fork_p4: fork failed: -1

p4_error: latest msg from perror: Error 0

A: The executable size of your program may be too large. When a ch_p4 or ch_tcp

device program starts, it may create a copy of itself to handle certain communication

tasks. Because of the way in which the code is organized, this (at least temporarily)

is a full copy of your original program and occupies the same amount of space. Thus,

if your program is over half as large as the maximum space available, you wil get

this error. On SGI systems, you can use the command size to get the size of the

executable and swap -l to get the available space. Note that size gives you the size

in bytes and swap -l gives you the size in 512-byte blocks. Other systems may o�er

similar commands.

A similar problem can happen on IBM SPx using the ch_mpl device; the cause is the

same but it originates within the IBM MPL library.

5`tstmachines' is not supported in the globus device

47

14. Q: Sometimes, I get the error

Exec format error. Wrong Architecture.

A: You are probably using NFS (Network File System). NFS can fail to keep �les

updated in a timely way; this problem can be caused by creating an executable on one

machine and then attempting to use it from another. Usually, NFS catches up with

the existence of the new �le within a few minutes. You can also try using the sync

command. mpirun in fact tries to run the sync command, but on many systems, sync

is only advisory and will not guarentee that the �le system has been made consistent.

15. Q: There seem to be two copies of my program running on each node. This doubles

the memory requirement of my application. Is this normal?

A: Yes, this is normal. In the ch_p4 implementation, the second process is used to

dynamically establish connections to other processes. With Version 1.1.1 of MPICH,

this functionality can be placed in a separate thread on many architectures, and this

second process will not be seen. To enable this, pass the option -threaded_listener

to the `configure' in `mpid/ch_p4/p4'. You can do this my using

-p4_opts=-threaded_listener on the configure command line for mpich.

16. Q: MPI_Abort sometimes doesn't work. Why?

A: Currently (Version 1.2.0) a process detects that another process has aborted only

when it tries to receive a message, and the aborting process is one that it has commu-

nicated with in the past. Thus it is porssible for a process busy with computation not

to notice that one of its peers has issued an MPI_Abort, although for many common

communication patterns this does not present a problem. This will be �xed in a future

release.

9.3.3 Intel Paragon

1. Q: How do I run jobs with mpirun under NQS on my Paragon?

A: Give mpirun the argument -paragontype nqs.

9.3.4 IBM RS6000

1. Q: When trying to run on an IBM RS6000 with the ch_p4 device, I got

% mpirun -np 2 cpi

Could not load program /home/me/mpich/examples/basic/cpi

Could not load library libC.a[shr.o]

Error was: No such file or directory

A: This means that MPICH was built with the xlC compiler but that some of the

machines in your `util/machines/machines.rs6000' �le do not have xlC installed.

Either install xlC or rebuild MPICH to use another compiler (either xlc or gcc; gcc

has the advantage of never having any licensing restrictions).

48

9.3.5 IBM SP

1. Q: When starting my program on an IBM SP, I get this:

$ mpirun -np 2 hello

ERROR: 0031-124 Couldn't allocate nodes for parallel execution. Exiting ...

ERROR: 0031-603 Resource Manager allocation for task: 0, node:

me1.myuniv

.edu, rc = JM_PARTIONCREATIONFAILURE

ERROR: 0031-635 Non-zero status -1 returned from pm_mgr_init

A: This means that either mpirun is trying to start jobs on your SP in a way di�erent

than your installation supports or that there has been a failure in the IBM software

that manages the parallel jobs (all of these error messages are from the IBM poe

command that mpirun uses to start the MPI job). Contact your system administrator

for help in �xing this situation. You system administrator can use

dsh -av "ps aux | egrep -i 'poe|pmd|jmd'"

from the control workstation to search for stray IBM POE jobs that can cause this

behavior. The �les /tmp/jmd_err on the individual nodes may also contain useful

diagnostic information.

2. Q: When trying to run on an IBM SP, I get the message from mpirun:

ERROR: 0031-214 pmd: chdir </a/user/gamma/home/mpich/examples/basic>

ERROR: 0031-214 pmd: chdir </a/user/gamma/home/mpich/examples/basic>

A: These are messages from tbe IBM system, not from mpirun. They may be caused

by an incompatibility between POE, the automounter (especially the AMD auto-

mounter) and the shell, especially if you are using a shell other than ksh. There is no

good solution; IBM often recommends changing your shell to ksh!

3. Q: When I tried to run my program on an IBM SP, I got

ERROR : Cannot locate message catalog (pepoe.cat) using current NLSPATH

INFO : If NLSPATH is set correctly and catalog exists, check LANG or

LC_MESSAGES variables

(C) Opening of "pepoe.cat" message catalog failed

(and other variations that mention NLSPATH and \message catalog").

A: This is a problem in your system; contact your support sta�. Have them look at

(a) value of NLSPATH, (b) links from `/usr/lib/nls/msg/prime' to the appropriate

language directory. The messages are not from MPICH; they are from the IBM

POE/MPL code the MPICH implementation is using.

4. Q: When trying to run on an IBM SP, I get this message:

ERROR: 0031-124 Less than 2 nodes available from pool 0

49

A: This means that the IBM POE/MPL system could not allocate the requested

nodes when you tried to run your program; most likely, someone else was using the

system. You can try to use the environment variables MP_RETRY and MP_RETRYCOUNT

to cause the job to wait until the nodes become available. Use man poe to get more

information.

5. Q: When running on an IBM SP, my job generates the message

Message number 0031-254 not found in Message Catalog.

and then dies.

A: If your user name is eight characters long, you may be experiencing a bug in the

IBM POE environment. The only �x at the time this was written was to use an

account whose user name was seven characters or less. Ask your IBM representative

about PMR 4017X (poe with userids of length eight fails) and the associated APAR

IX56566.

9.4 Programs fail at startup

9.4.1 General

1. Q: With some systems, you might see

/lib/dld.sl: Bind-on-reference call failed

/lib/dld.sl: Invalid argument

(This example is from HP-UX), or

ld.so: libc.so.2: not found

(This example is from SunOS 4.1; similar things happen on other systems).

A: The problem here is that your program is using shared libraries, and the libraries

are not available on some of the machines that you are running on. To �x this, relink

your program without the shared libraries. To do this, add the appropriate command-

line options to the link step. For example, for the HP system that produced the errors

above, the �x is to use -Wl,-Bimmediate to the link step. For SunOS, the appropriate

option is -Bstatic.

9.4.2 Workstation Networks

1. Q: I can run programs using a small number of processes, but once I ask for more

than 4{8 processes, I do not get output from all of my processes, and the programs

never �nish.

A:We have seen this problem with installations using AFS. The remote shell program,

rsh, supplied with some AFS systems limits the number of jobs that can use standard

output. This seems to prevent some of the processes from exiting as well, causing the

job to hang. There are four possible �xes:

50

(a) Use a di�erent rsh command. You can probably do this by putting the direc-

tory containing the non-AFS version �rst in your PATH. This option may not be

available to you, depending on your system. At one site, the non-AFS version

was in `/bin/rsh'.

(b) Use the secure server (serv_p4). See the discussion in the Users Guide.

(c) Redirect all standard output to a �le. The MPE routine

MPE_IO_Stdout_to_file may be used to do this.

(d) Get a �xed rsh command. The likely source of the problem is an incorrect usage

of the select system call in the rsh command. If the code is doing something

like

int mask;

mask |= 1 << fd;

select(fd+1, &mask, ...);

instead of

fd_set mask;

FD_SET(fd,&mask);

select(fd+1, &mask, ...);

then the code is incorrect (the select call changed to allow more than 32 �le de-

scriptors many years ago, and the rsh program (or programmer!) hasn't changed

with the times).

A fourth possiblity is to get an AFS version of rsh that �xes this bug. As we are not

running AFS ourselves, we do not know whether such a �x is available.

2. Q: Not all processes start.

A: This can happen when using the ch_p4 device and a system that has extremely

small limits on the number of remote shells you can have. Some systems using \Ker-

beros" (a network security package) allow only three or four remote shells; on these

systems, the size of MPI_COMM_WORLD will be limited to the same number (plus one if

you are using the local host).

The only way around this is to try the secure server; this is documented in the mpich

installation guide. Note that you will have to start the servers \by hand" since the

chp4_servs script uses remote shell to start the servers.

9.5 Programs fail after starting

9.5.1 General

1. Q: I use MPI_Allreduce, and I get di�erent answers depending on the number of

processes I'm using.

A: The MPI collective routines may make use of associativity to achieve better par-

allelism. For example, an

MPI_Allreduce(&in, &out, MPI_DOUBLE, 1, ...);

51

might compute

(((((((a + b) + c) + d) + e) + f) + g) + h)

or it might compute

((a+ b) + (c+ d)) + ((e+ f) + (g + h));

where a; b; : : : are the values of in on each of eight processes. These expressions are

equivalent for integers, reals, and other familar objects from mathematics but are not

equivalent for datatypes, such as oating point, used in computers. The association

that MPI uses will depend on the number of processes, thus, you may not get exactly

the same result when you use di�erent numbers of processes. Note that you are not

getting a wrong result, just a di�erent one (most programs assume the arithmetic

operations are associative).

2. Q: I get the message

No more memory for storing unexpected messages

when running my program.

A: mpich has been con�gured to \aggressively" deliver messages. This is appropriate

for certain types of parallel programs, and can deliver higher performance. However, it

can cause applications to run out of memory when messages are delivered faster than

they are processed. The mpich implementation does attempt to control such memory

usage, but there are still a few more steps to take in the mpich implementation. As

a work-around, you can introduce synchronous sends or barriers into your code. The

need for these will be eliminated in a future mpich release; the 1.2.0 release is much

more careful about its memory use.

3. Q: My Fortran program fails with a BUS error.

A: The C compiler that MPICH was built with and the Fortran compiler that you are

using have di�erent alignment rules for things like DOUBLE PRECISION. For example,

the GNU C compiler gcc may assume that all doubles are aligned on eight-byte

boundaries, but the Fortran language requires only that DOUBLE PRECISION align

with INTEGERs, which may be four-byte aligned.

There is no good �x. Consider rebuilding MPICH with a C compiler that supports

weaker data alignment rules. Some Fortran compilers will allow you to force eight-byte

alignment for DOUBLE PRECISION (for example, -dalign or -f on some Sun Fortran

compilers); note though that this may break some correct Fortran programs that

exploit Fortran's storage association rules.

Some versions of gcc may support -munaligned-doubles; mpich should be rebuilt

with this option if you are using gcc, version 2.7 or later.

4. Q: I'm using fork to create a new process, or I'm creating a new thread, and my code

fails.

A: The mpich implementation is not thread safe and does not support either fork

or the creation of new processes. Note that the MPI speci�cation is thread safe, but

implementations are not required to be thread safe. At this writing, few implemen-

tations are thread-safe, primarily because this reduces the performance of the MPI

52

implementation (you at least need to check to see if you need a thread lock, actually

getting and releasing the lock is even more expensive).

The mpich implementation supports the MPI_Init_thread call; with this call, new

in MPI-2, you can �nd out what level of thread support the MPI implementation

supports. As of version 1.2.0 of mpich, only MPI_THREAD_SINGLE is supported. Future

versions of mpich will support MPI_THREAD_MULTIPLE.

Q: C++ programs execute global destructors (or constructors) more times than ex-

pected. For example:

class Z {

public:

Z() { cerr << "*Z" << endl; }

~Z() { cerr << "+Z" << endl; }

};

Z z;

int main(int argc, char **argv) {

MPI_Init(&argc, &argv);

MPI_Finalize();

}

when running with the ch_p4 device on two processes executes the destructor twice

for each process.

A: The number of processes running before MPI_Init or after MPI_Finalize is not

de�ned by the MPI standard; you can not rely on any speci�c behavior. In the ch_p4

case, a new process is forked to handle connection requests; it terminates with the

end of the program.

9.5.2 HPUX

1. Q:My Fortran programs seem to fail with SIGSEGV when running on HP workstations.

A: Try compiling and linking the Fortran programs with the option +T. This may be

necessary to make the Fortran environment correctly handle interrupts used by mpich

to create connections to other processes.

9.5.3 ch shmem device

1. Q: My program sometimes hangs when using the ch_shmem device. A: Make sure

that you are linking with all of the correct libraries. If you are not using

mpicc, try using mpicc to link your application. The reason for this is that correct

operation of the shared-memory version may depend on additional, system-provided

libraries. For example, under Solaris, the thread library must used, otherwise, non-

functional versions of the mutex routines critical to the correct functioning of the MPI

implementation are taken from `libc' instead.

53

9.5.4 LINUX

1. Q: Processes fail with messages like

p0_1835: p4_error: Found a dead connection while looking for messages: 1

A: What is happening is that the TCP implementation on this platform is deciding

that the connection has \failed" when it really hasn't. The current MPICH imple-

mentation assumes that the TCP implementation will not close connections and has

no code to reanimate failed connections. Future versions of MPICH will work around

this problem.

In addition, some users have found that the single processor kernel is more stable than

the SMP kernel.

9.6 Trouble with Input and Output

9.6.1 General

1. Q: I want output from printf to appear immediately.

A: This is really a feature of your C and/or Fortran runtime system. For C, consider

setbuf(stdout, (char *)0);

9.6.2 IBM SP

1. Q: I have code that prompts the user and then reads from standard input. On IBM

SPx systems, the prompt does not appear until after the user answers the prompt!

A: This is a feature of the IBM POE system. There is a POE routine,

mpc_flush(1), that you can use to ush the output. Read the man page on this

routine; it is synchronizing over the entire job and cannot be used unless all processes

in MPI_COMM_WORLD call it. Alternately, you can always end output with the newline

character (\n); this will cause the output to be ushed but will also put the user's

input on the next line.

9.6.3 Workstation Networks

1. Q: I want standard output (stdout) from each process to go to a di�erent �le.

A: mpich has no built-in way to do this. In fact, it prides itself on gathering the

stdouts for you. You can do one of the following:

(a) Use Unix built-in commands for redirecting stdout from inside your program

(dup2, etc.). The MPE routine MPE_IO_Stdout_to_file, in `mpe/mpe_io.c',

shows one way to do this. Note that in Fortran, the approach of using dup2 will

work only if the Fortran PRINT writes to stdout. This is common but by no

means universal.

54

(b) Write explicitly to �les instead of to stdout (use fprintf instead of printf,

etc.). You can create the �le name from the process's rank. This is the most

portable way.

9.7 Upshot and Nupshot

The upshot and nupshot programs require speci�c versions of the tcl and tk languages.

This section describes only problems that may occur once these tools have been successfully

built.

9.7.1 General

1. Q: When I try to run upshot or nupshot, I get

No display name and no $DISPLAY environment variables

A: Your problem is with your X environment. Upshot is an X program. If your

workstation name is `foobar.kscg.gov.tw', then before running any X program, you

need to do

setenv DISPLAY foobar.kscg.gov.tw:0

If you are running on some other system and displaying on foobar, you might need to

do

xhost +othermachine

on foobar, or even

xhost +

which gives all other machines permission to write on foobar's display.

If you do not have an X display (you are logged in from a Windows machine without

an X capability) then you cannot use upshot.

2. Q: When trying to run upshot, I get

upshot: Command not found.

A: First, check that upshot is in your path. You can use the command

which upshot

to do this.

If it is in your path, the problem may be that the name of the wish interpreter is too

long for your Unix system. Look at the �rst line of the `upshot' �le. It should be

something like

55

#! /usr/local/bin/wish -f

If it is something like

#! /usr/local/tcl7.4-tk4.2/bin/wish -f

this may be too long of a name (some Unix systems restrict this �rst line to a mere

32 characters). To �x this, you'll need to put a link to `wish' somewhere where the

name will be short enough. Alternately, you can start upshot with

/usr/local/tcl7.4-tk4.2/bin/wish -f /usr/local/mpich/bin/upshot

9.7.2 HP-UX

1. Q: When trying to run upshot under HP-UX, I get error messages like

set: Variable name must begin with a letter.

or

upshot: syntax error at line 35: `(' unexpected

A: Your version of HP-UX limits the shell names for very short strings. Upshot is

a program that is executed by the wish shell, and for some reason HP-UX is both

refusing to execute in this shell and then trying to execute the upshot program using

your current shell (e.g., `sh' or `csh'), instead of issuing a sensible error message about

the command name being too long. There are two possible �xes:

(a) Add a link with a much shorter name, for example

ln -s /usr/local/tk3.6/bin/wish /usr/local/bin/wish

Then edit the upshot script to use this shorter name instead. This may require

root access, depending on where you put the link.

(b) Create a regular shell program containing the lines

#! /bin/sh

/usr/local/tk3.6/bin/wish -f /usr/local/mpi/bin/upshot

(with the appropriate names for both the `wish' and `upshot' executables).

Also, �le a bug report with HP. At the very least, the error message here is wrong;

also, there is no reason to restrict general shell choices (as opposed to login shells).

56

Appendices

A Automatic generation of pro�ling libraries

The pro�ling wrapper generator (wrappergen) has been designed to complement the MPI

pro�ling interface. It allows the user to write any number of `meta' wrappers which can be

applied to any number of MPI functions. Wrappers can be in separate �les, and can nest

properly, so that more than one layer of pro�ling may exist on indiividual functions.

Wrappergen needs three sources of input:

1. A list of functions for which to generate wrappers.

2. Declarations for the functions that are to be pro�led. For speed and parsing simplicity,

a special format has been used. See the �le `proto'.

3. Wrapper de�nitions.

The list of functions is simply a �le of whitespace-separated function names. If omitted,

any forallfn or fnall macros will expand for every function in the declaration �le.

A.1 Writing wrapper de�nitions

Wrapper de�nitions themselves consist of C code with special macros. Each macro is sur-

rounded by the ff gg escape sequence. The following macros are recognized by wrappergen:

{{fileno}}

An integral index representing which wrapper �le the macro came from. This

is useful when declaring �le-global variables to prevent name collisions. It is

suggested that all identi�ers declared outside functions end with _{{fileno}}.

For example:

static double overhead_time_{{fileno}};

might expand to:

static double overhead_time_0;

(end of example).

{{forallfn <function name escape> <function A> <function B> ... }}

...

{{endforallfn}}

The code between {{forallfn}} and {{endforallfn}} is copied once for every

function pro�led, except for the functions listed, replacing the escape string

speci�ed by <function name escape> with the name of each function. For

example:

57

{{forallfn fn_name}}static int {{fn_name}}_ncalls_{{fileno}};

{{endforallfn}}

might expand to:

static int MPI_Send_ncalls_1;

static int MPI_Recv_ncalls_1;

static int MPI_Bcast_ncalls_1;

(end of example)

{{foreachfn <function name escape> <function A> <function B> ... }}

...

{{endforeachfn}}

{{foreachfn}} is the same as {{forallfn}} except that wrappers are written

only the functions named explicitly. For example:

{{forallfn fn_name mpi_send mpi_recv}}

static int {{fn_name}}_ncalls_{{fileno}};

{{endforallfn}}

might expand to:

static int MPI_Send_ncalls_2;

static int MPI_Recv_ncalls_2;

(end of example)

{{fnall <function name escape> <function A> <function B> ... }}

...

{{callfn}}

...

{{endfnall}}

{{fnall}} de�nes a wrapper to be used on all functions except the functions

named. Wrappergen will expand into a full function de�nition in traditional

C format. The {{callfn}} macro tells wrappergen where to insert the call

to the function that is being pro�led. There must be exactly one instance

of the {{callfn}} macro in each wrapper de�nition. The macro speci�ed by

<function name escape> will be replaced by the name of each function.

Within a wrapper de�nition, extra macros are recognized.

{{vardecl <type> <arg> <arg> ... }}

Use vardecl to declare variables within a wrapper de�nition. If nested

macros request variables through vardecl with the same names, wrap-

pergen will create unique names by adding consecutive integers to the

end of the requested name (var, var1, var2, ...) until a unique name

is created. It is unwise to declare variables manually in a wrapper

de�nition, as variable names may clash with other wrappers, and the

variable declarations may occur later in the code than statements from

other wrappers, which is illegal in classical and ANSI C.

58

{{<varname>}}

If a variable is declared through vardecl, the requested name for

that variable (which may be di�erent from the uniqui�ed form that

will appear in the �nal code) becomes a temporary macro that will

expand to the uniqui�ed form. For example,

{{vardecl int i d}}

may expand to:

int i, d3;

(end of example)

{{<argname>}}

Suggested but not neccessary, a macro consisting of the name of one

of the arguments to the function being pro�led will be expanded to

the name of the corresponding argument. This macro option serves

little purpose other than asserting that the function being pro�lied

does indeed have an argument with the given name.

{{<argnum>}}

Arguments to the function being pro�led may also be referenced by

number, starting with 0 and increasing.

{{returnVal}}

ReturnVal expands to the variable that is used to hold the return

value of the function being pro�led.

{{callfn}}

callfn expands to the call of the function being pro�led. With nested wrapper

de�nitions, this also represents the point at which to insert the code for any

inner nested functions. The nesting order is determined by the order in which

the wrappers are encountered by wrappergen. For example, if the two �les

`prof1.w' and `prof2.w' each contain two wrappers for MPI Send, the pro�ling

code produced when using both �les will be of the form:

int MPI_Send(args...)

arg declarations...

{

/*pre-callfn code from wrapper 1 from prof1.w */

/*pre-callfn code from wrapper 2 from prof1.w */

/*pre-callfn code from wrapper 1 from prof2.w */

/*pre-callfn code from wrapper 2 from prof2.w */

returnVal = MPI_Send(args...);

59

/*post-callfn code from wrapper 2 from prof2.w */

/*post-callfn code from wrapper 1 from prof2.w */

/*post-callfn code from wrapper 2 from prof1.w */

/*post-callfn code from wrapper 1 from prof1.w */

return returnVal;

}

{{fn <function name escape> <function A> <function B> ... }}

...

{{callfn}}

...

{{endfnall}}

fn is identical to fnall except that it only generates wrappers for functions

named explicitly. For example:

{{fn this_fn MPI_Send}}

{{vardecl int i}}

{{callfn}}

printf("Call to {{this_fn}}.\n");

printf("{{i}} was not used.\n");

printf("The first argument to {{this_fn}} is {{0}}\n");

{{endfn}}

will expand to:

int MPI_Send(buf, count, datatype, dest, tag, comm)

void * buf;

int count;

MPI_Datatype datatype;

int dest;

int tag;

MPI_Comm comm;

{

int returnVal;

int i;

returnVal = PMPI_Send(buf, count, datatype, dest, tag, comm);

printf("Call to MPI_Send.\n");

printf("i was not used.\n");

printf("The first argument to MPI_Send is buf\n");

return returnVal;

}

A sample wrapper �le is in `sample.w' and the corresponding output �le is in `sample.out'.

60

B Options for mpirun

The options for mpirun6, as shown by mpirun -help, are

mpirun [mpirun_options...] <progname> [options...]

mpirun_options:

-arch <architecture>

specify the architecture (must have matching machines.<arch>

file in ${MPIR_HOME}/bin/machines) if using the execer

-h This help

-machine <machine name>

use startup procedure for <machine name>

-machinefile <machine-file name>

Take the list of possible machines to run on from the

file <machine-file name>

-np <np>

specify the number of processors to run on

-nolocal

don't run on the local machine (only works for

p4 and ch_p4 jobs)

-stdin filename

Use filename as the standard input for the program. This

is needed for programs that must be run as batch jobs, such

as some IBM SP systems and Intel Paragons using NQS (see

-paragontype below).

-t Testing - do not actually run, just print what would be

executed

-v Verbose - throw in some comments

-dbx Start the first process under dbx where possible

-gdb Start the first process under gdb where possible

-xxgdb Start the first process under xxgdb where possible

(on the Meiko, selecting either -dbx or -gdb starts prun

under totalview instead)

Options for the globus device:

With the exception of -h, these are the only mpirun options supported

by the globus device.

-machinefile <machine-file name>

Take the list of possible machines to run on from the

file <machine-file name>

-np <np>

specify the number of processors to run on

6Not all the options are supported by the globus device. See the section \Options for the globus device"

in this appendix.

61

-leave_pg

Don't delete the globus RSL file after running

-globusargs dumprsl | {stage, nostage}

dumprsl - display the RSL string that would have been

used to submit the job. using this option

does not run the job.

{stage, nostage} - stage takes the executable named on

the mpirun command and transfers it

to all the executable machines

(~/.gass_cache) and removes it

after executing.

this only works when all the executable

machines are binary compatible.

the default value is nostage.

when specifying more than one value to -globusargs, you

must surrond them all with double quotation marks, e.g.,

-globusargs "dumprsl stage"

-globusrsl <globus-rsl-file name>

<globus-rsl-file name> must contain a Globus RSL

string. When using this option all other mpirun options

are ignored and -leave_pg is implied.

Special Options for Batch Environments:

-mvhome Move the executable to the home directory. This

is needed when all file systems are not cross-mounted

Currently only used by anlspx

-mvback files

Move the indicated files back to the current directory.

Needed only when using -mvhome; has no effect otherwise.

-maxtime min

Maximum job run time in minutes. Currently used only

by anlspx. Default value is $max_time minutes.

-nopoll Do not use a polling-mode communication.

Available only on IBM SPx.

-mem value

This is the per node memory request (in Mbytes). Needed for some

CM-5s. (Default $max_mem.)

-cpu time

This is the the hard cpu limit used for some CM-5s in

minutes. (Default $maxtime minutes.)

Special Options for IBM SP2:

-cac name

CAC for ANL scheduler. Currently used only by anlspx.

62

If not provided will choose some valid CAC.

Special Options for Intel Paragon:

-paragontype name

Selects one of default, mkpart, NQS, depending on how you want

to submit jobs to a Paragon.

-paragonname name

Remote shells to name to run the job (using the -sz method) on

a Paragon.

-paragonpn name

Name of partition to run on in a Paragon (using the -pn name

command-line argument)

On exit, mpirun returns a status of zero unless mpirun detected a problem, in which

case it returns a non-zero status (currently, all are one, but this may change in the future).

Multiple architectures may be handled by giving multiple -arch7 and -np arguments.

For example, to run a program on 2 sun4s and 3 rs6000s, with the local machine being a

sun4, use

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program

This assumes that program will run on both architectures. If di�erent executables are

needed, the string '%a' will be replaced with the arch name. For example, if the programs

are program.sun4 and program.rs6000, then the command is

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program.%a

If instead the executables are in di�erent directories; for example, `/tmp/me/sun4' and

`/tmp/me/rs6000', then the command is

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 /tmp/me/%a/program

It is important to specify the architecture with -arch before specifying the number of

processors. Also, the �rst arch command must refer to the processor on which the job will

be started. Speci�cally, if -nolocal is not speci�ed, then the �rst -arch must refer to the

processor from which mpirun is running.

C MPI, Globus, and GUSTO

In the section we describe how to run MPI programs using the MPICH Globus device in

the GUSTO distributed computing environment.

7
-arch is not supported by the globus device.

63

C.1 Using the globus device on GUSTO

Three features of the GUSTO environment make the use of the globus device particularly

easy:

� The public-key-based implementation of Globus security services are used; this al-

lows you to log on just once and then access resources at a variety of GUSTO sites.

(However, you must �rst set up your Globus security environment: see below).

� Globus process creation servers called Globus Resource AllocationManagers (GRAMs)

or simply resource managers already exist on the various GUSTO resources.

� You have access to a Lightweight Directory Access Protocol (LDAP) database called

the Metacomputing Directory Service (MDS) where information describing Globus

installations is stored. We shall see how this is used below.

Perform the following experiment to verify that your machine has the Globus client

software installed and con�gured to use GUSTO. Use the following ldapsearch command

to query MDS for the names of all GUSTO resource managers:8,

% <globusinstalldir>/bin/ldapsearch "mn=*" | grep ^mn

which should result in something similar to this

mn=bolas.isi.edu-fork@globus.org, ou=ISI, o=University of Southern California, o=Globus, c=US

mn=bolas.isi.edu-fork@globus.org

mn=fr1n12.mhpcc.edu-fork@globus.org, o=Maui High Performance Computing Center, o=Globus, c=US

mn=fr1n12.mhpcc.edu-fork@globus.org

mn=fr37n13.mhpcc.edu-fork@globus.org, o=Maui High Performance Computing Center, o=Globus, c=US

mn=fr37n13.mhpcc.edu-fork@globus.org

mn=sif.ncsa.uiuc.edu-lsf@globus.org, o=NCSA, o=Globus, c=US

mn=sif.ncsa.uiuc.edu-lsf@globus.org

mn=pitcairn.mcs.anl.gov-fork@globus.org, ou=MCS, o=Argonne National Laboratory, o=Globus, c=US

mn=pitcairn.mcs.anl.gov-fork@globus.org

C.1.1 Setting up security for GUSTO

Because GUSTO uses public key security, you must spend a few minutes setting up your

security environment before you can start using the globus device on GUSTO. This entails

obtaining a private key from the GUSTO certi�cate authority (CA) and setting up some

local con�guration information. This process is somewhat complex but only has to be per-

formed once. See http://www.globus.org/security/tutorial.html for a more detailed

discussion of these topics.

1. Set your GLOBUS_DIR environment variable to point to the top level Globus directory:

% setenv GLOBUS_DIR <globusinstalldir>

8Complete instructions regarding how to use ldapsearch to query MDS can be found at

http://www.globus.org.

64

2. Augment your path to include the bin directories for both Globus and the SSL li-

braries, which must also be installed to use the globus device on GUSTO (see http:/

/www.globus.org for details). These are

$GLOBUS_DIR/bin

<sslinstalldir>/bin

3. Make a directory in which to store your certi�cate and key:

% mkdir ~/cert

% cd ~/cert

4. Run the SSL certreq program to generate your certi�cate request and private key:

% certreq

Something like this will appear upon your screen. It may take a few seconds to �nish

generating the private key.

Using configuration from

/soft/pub/packages/SSLeay-0.8.1/etc/ssleay.globus.cnf

Generating a 1024 bit RSA private key

................................+++++

......................+++++

writing new private key to 'newkey.pem'

Enter PEM pass phrase:

At this point, you should enter in a pass phrase. A pass phrase is basically a password,

except that it can be longer (64 characters) and can include spaces. It will immediately

ask you to re-enter your password, for veri�cation. The subsequent screen output will

be:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be

incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name

or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:

You can press return to answer any question with the default value (within the brackets

[]). Otherwise, enter the appropriate information. The next few questions are as

follows:

65

Main Organization [Globus]:

Home Globus Site [Argonne National Laboratory]:

Organizational Unit Name (eg, section) [MCS]:

name (eg, Globus id without the @globus.org) []:

For name, enter your old \globusid", which tended to be your username or last name,

(e.g., smartin, wsmith, foster).

The next questions pertain to optional information not currently being used by the

authentication program. You may simply hit return to all further questions. The

screen output will be:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

Private key is in newkey.pem

Request is in newreq.pem

E-Mail the newreq.pem file to Globus CA:

ca@globus.org

At this point, you are done with the certreq script. It will return you to the UNIX

prompt, having created 2 new �les in your directory, newkey.pem and newreq.pem.

5. Mail the newreq.pem �le to the GUSTO CA:

% mail ca@globus.org < newreq.pem

You should receive a response from the CA with your signed certi�cate.

6. Store the certi�cate received from the GUSTO CA (including the

----BEGIN CERTIFICATE----

and

----END CERTIFICATE----

delimiters) in the �le ~/cert/newcert.pem.

7. Set protection modes on the �les in ~/cert:

% chmod 444 newcert.pem

% chmod 400 newkey.pem

These protections are essential if you are to insure the security and integrity of your

private key and certi�cate. Basically they ensure that the certi�cate is world readable

but unalterable, while the private key �le is readable only by you, the user, and also

unalterable.

8. Use the setenv command to set the environment variables used to locate your cer-

ti�cate �le, private key, and trusted certi�cates:

66

% cd

% setenv X509_CERT_DIR $GLOBUS_DIR/share

% setenv X509_USER_CERT cert/newcert.pem

% setenv X509_USER_KEY cert/newkey.pem

% setenv X509_USER_PROXY cert/newproxy.pem

The �rst of these commands indicates the directory containing the trusted certi�cate;

the second the �lename of the �le containing your certi�cate; the third the �lename

of the �le containing your private key; and the fourth the �lename in which your

temporary proxy certi�cate and key should be stored.

9. Enable access to the resources that you wish to use. Before you can use any GUSTO

resource, you must (a) have an account on those resources, and (b) have any entry in

an access control list called a globusmap �le associated with the resource. You must

email the Globus administrator of each resource in question.

C.1.2 Authenticating yourself to GUSTO

Now that you have set up your Globus security environment, you are ready to run some

MPI programs. As a �rst step, we authenticate ourselves (\log on") to GUSTO by running

the command cinit. This command creates a temporary credential, which allows you to

use GUSTO resources for a certain amount of time. This credential is stored in a �le, the

name of which must be recorded in the environment variable X509_USER_PROXY. Hence, we

might type:

% setenv X509_USER_PROXY /tmp/my_temporary_cert

% cinit -out $X509_USER_PROXY

The temporary credential is valid for a default period of time, typically 12 hours. You

can change this period by using the -hours ag on the cinit command, for example:

% setenv X509_USER_PROXY /tmp/my_temporary_cert

% cinit -hours 6 -out $X509_USER_PROXY

You may acquire a new security credential at any time. If you acquire a new credential

before a previous one expires, the new credential simply overwrites the old one. Attempt-

ing to start an MPI application in the presence of an expired security credential

will result in failure.

C.1.3 Using mpirun on GUSTO

Before typing your �rst mpirun command you must identify the computers on which you

wish to run your application. This is done by listing the manager names associated with

these computers in a machines �le on your Globus client. For example, the following

machines �le

67

ico16.mcs.anl.gov-easymcs@globus.org 10

sp023e.sp.uh.edu-loadleveler@globus.org 5

names managers associated with two IBM SPs, one at Argonne and the other at the Uni-

versity of Houston. Assuming the machines �le and executable myapp are in your current

directory, you can then start your application as follows:

% mpirun -np 15 -globusargs stage myapp

This command loads myapp on 10 nodes on the Argonne SP, transfers a copy of myapp to

the Houston SP (-globusargs stage), and loads myapp on 5 nodes there. (The number of

nodes to create on each machine are speci�ed by the counts appearing at the end of each line

in the machines �le.) Issues of authentication and the submission of appropriate requests

to the Argonne and Houston SP schedulers are handled automatically. All 15 nodes behave

as a single MPI application, i.e., a single MPI_COMM_WORLD with nodes ranked 0 through

14. Standard output and standard error are routed back to the originating node. Hence,

the behavior is identical to that of an MPI program running on a single 15-node parallel

computer.

Determining resource manager names. This example assumes that you know the

resource manager names for the computers on which you want to run. To learn the man-

ager name for a particular machine9, e.g., pitcairn.mcs.anl.gov, use the ldapsearch

command introduced earlier:

yukon% ldapsearch "hn=pitcairn.mcs.anl.gov" | grep ^mn

mn=pitcairn.mcs.anl.gov-fork@globus.org, ou=MCS, o=Argonne National Laboratory,

o=Globus, c=US

mn=pitcairn.mcs.anl.gov-fork@globus.org

which returns two di�erent names for the one GRAM running on pitcairn.mcs.anl.gov.

The �rst, longer name is called the distinguished name; we are only interested in the second,

shorter name, pitcairn.mcs.anl.gov-fork@globus.org.

To �nd all the manager names at a particular location, e.g., Argonne National Labora-

tory,

ldapsearch "mn=*" mn | grep ^mn | grep "anl.gov"

mn=pitcairn.mcs.anl.gov-fork@globus.org, ou=MCS, o=Argonne National Laboratory,

o=Globus, c=US

mn=pitcairn.mcs.anl.gov-fork@globus.org

mn=ico16.mcs.anl.gov-fork@globus.org, ou=MCS, o=Argonne National Laboratory, o=G

lobus, c=US

mn=ico16.mcs.anl.gov-fork@globus.org

mn=ico16.mcs.anl.gov-easymcs@globus.org, ou=MCS, o=Argonne National Laboratory,

o=Globus, c=US

mn=ico16.mcs.anl.gov-easymcs@globus.org

9Although a single machine typically has one GRAM, multiple GRAMs may run on a single machine.

68

Specifying node counts. The optional numbers appearing at the end of each line in a

machines �le (default value = 1) are used to determine the maximum number of nodes to

create on each machine. Hence, given the machines �le above, the command mpirun -np

8 would start just 8 nodes on the Argonne SP. mpirun \wraps around" the machines �le,

so -np 18 would create 10 nodes on the Argonne SP, 5 nodes at Houston, and a further

3 nodes at Argonne. These three groups of nodes comprise three distinct \subjobs." This

distinction is important because communication within a subjob can be very di�erent from

communication between subjobs, particularly on MPPs such as the IBM SP. Communication

between subjobs is always done using TCP/IP. Communication within a subjob is done

using the fastest protocol available, for example IBM's MPL.

Staging. In the above example, we used the -globusargs stage option to request that

our application be staged to the computers on which we wanted to run. Staging works here

because the computers in question are binary compatible. If even one of the platforms listed

in the machines �le is not binary compatible then you may not use the -globusargs stage

option. Instead, you must either stage executables manually, prior to running the program,

or use the more exible staging commands described in C.1.4 below.

If you wanted to run an application on a cluster of binary compatible workstations (one

process on each) that all share the same �lesystem, then staging is not required. In this

case you write a machines �le listing the Globus servers in your cluster, e.g.,

pitcairn.mcs.anl.gov-fork@globus.org

tuva.mcs.anl.gov-fork@globus.org

and omit the -globusargs stage option from the mpirun command:

% mpirun -np 2 myapp

Locating the machines �le. The mpirun command determines which machines �le to

use as follows:

1. If a -machinefile <machinefilename> argument is speci�ed on the

mpirun command, it uses that; otherwise,

2. it looks for a �le machines in the directory in which you typed mpirun; and �nally,

3. it looks for a machines �le in <mpidir>/lib/<arch>/globus where <mpidir> is the

directory where you built MPICH and <arch> is the architecture MPICH was built

on, e.g., solaris, IRIX64,

If none of these information are provided, then mpirun fails.

C.1.4 Advanced features of the globus device

As noted above, the -globusargs stage command does not support staging when machines

are not binary compatible. In this situation, we must currently use something called a

69

Resource Speci�cation Language (RSL) request to specify the executable �lename for each

machine. This technique is very exible, but rather complex; work is currently underway

to simplify the manner in which these issues are addressed.

The easiest way to learn how to write your own RSL request is to study the one generated

for you by mpirun. Consider the example where we wanted to run an application on a cluster

of workstations. Recall our machines �le looked like this:

pitcairn.mcs.anl.gov-fork@globus.org

tuva.mcs.anl.gov-fork@globus.org

To view the RSL request generated in this situation, without actually launching the program,

we type the following mpirun command:

% mpirun -globusargs dumprsl -np 2 myapp 123 456

which produces the following output:

+

(&(resourceManagerContact="pitcairn.mcs.anl.gov:8711:pitcairn.mcs.anl.gov-f

ork@globus.org")

(count=1)

(label="subjob 0")

(arguments=" 123 456")

(directory=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus)

(executable=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus/myapp)

)

(&(resourceManagerContact="tuva.mcs.anl.gov:8711:tuva.mcs.anl.gov-fork@glob

us.org")

(count=1)

(label="subjob 1")

(arguments=" 123 456")

(directory=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus)

(executable=/homes/karonis/MPI/mpich.yukon/mpich/lib/IRIX64/globus/myapp)

)

This RSL speci�cation speci�es such things as the \contact string" for the GRAMs that we

will be using, the number of nodes that we want to create, a unique label for each subjob,

our home directory, and the name of the executable that we will be using.

We can write a custom RSL request by simply modifying the request obtained above.

For example, if we want to use a di�erent executable on the two di�erent machines, we can

simply change the executable name. Once we have made this change, we use the -globusrsl

option to supply this modi�ed request to mpirun:

% mpirun -globusrsl <myrslrequestfile>

where <myrslrequestfile> is the �lename of your RSL reqeust. You do not specify any

other arguments to mpirun (e.g., -np, executable, command line arguments, etc.), and even

the machines �le is ignored, as all required information is contained in the RSL request.

RSL is a exible language capable of doing much more than has been presented here. For

example, it can be used to stage executables and to set environment variables on remote

70

computers before starting execution. A full description of the language can be found at

http://www.globus.org.

Acknowledgments

The work described in this report has bene�ted from conversations with and use by a large

number of people. We also thank those that have helped in the implementation of MPICH,

particularly Patrick Bridges and Edward Karrels. Particular thanks goes to Nathan Doss

and Anthony Skjellum for valuable help in the implementation and development of MPICH.

More recently, Debbie Swider has joined the MPICH team. The Globus device was imple-

mented by Nick Karonis of Northern Illinois University. The C++ bindings were imple-

mented by Andrew Lumsdaine and Je� Squyres of the University of Notre Dame. The

ROMIO MPI-2 parallel I/O subsystem was implemented by Rajeev Thakur of Argonne.

References

[1] Ralph Butler and Ewing Lusk. User's guide to the p4 parallel programming system.

Technical Report ANL-92/17, Argonne National Laboratory, Argonne, IL, 1992.

[2] IMPI Steering Committee. IMPI - interoperable message-passing interface, 1998.

http://impi.nist.gov/IMPI/.

[3] James Cownie and William Gropp. A standard interface for debugger access to message

queue information in MPI. Technical Report ANL/MCS-P754-0699, Mathematics and

Computer Science Division, Argonne National Laboratory, June 1999.

[4] Message Passing Interface Forum. MPI: A message-passing interface standard. Com-

puter Science Dept. Technical Report CS-94-230, University of Tennessee, Knoxville,

TN, 1994.

[5] William Gropp and Ewing Lusk. Installation guide for mpich, a portable implementa-

tion of MPI. Technical Report ANL-96/5, Argonne National Laboratory, 1996.

[6] William Gropp and Ewing Lusk. A high-performance MPI implementation on a shared-

memory vector supercomputer. Parallel Computing, 22(11):1513{1526, January 1997.

[7] William Gropp and Ewing Lusk. Sowing MPICH: A case study in the dissemination of

a portable environment for parallel scienti�c computing. IJSA, 11(2):103{114, Summer

1997.

[8] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-

performance, portable implementation of the MPI Message-Passing Interface standard.

Parallel Computing, 22(6):789{828, 1996.

[9] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message Passing Interface. MIT Press, Cambridge, MA, 1994.

71

[10] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message Passing Interface, 2nd edition. MIT Press, Cambridge,

MA, 1999.

[11] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features of

the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

[12] M. T. Heath. Recent developments and case studies in performance visualization us-

ing ParaGraph. In G. Haring and G. Kotsis, editors, Performance Measurement and

Visualization of Parallel Systems, pages 175{200. Elsevier Science Publishers, 1993.

[13] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with upshot.

Technical Report ANL{91/15, Argonne National Laboratory, 1991.

[14] Edward Karrels and Ewing Lusk. Performance analysis of MPI programs. In Jack Don-

garra and Bernard Tourancheau, editors, Proceedings of the Workshop on Environments

and Tools For Parallel Scienti�c Computing, pages 195{200. SIAM Publications, 1994.

[15] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. Inter-

national Journal of Supercomputer Applications, 8(3/4):165{414, 1994.

[16] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufman, 1997.

[17] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Don-

garra. MPI|The Complete Reference: Volume 1, The MPI Core, 2nd edition. MIT

Press, Cambridge, MA, 1998.

72

